bzoj2301(莫比乌斯反演)

经典题。首先得知道最基本的莫比乌斯求1-n和1-m之间有多少互质对

然后根据下面论文

http://wenku.baidu.com/view/fbe263d384254b35eefd34eb.html

将每次查询的时间优化为n^(0.5)

妙啊 妙啊

还有要注意的一点,a,b,c,d不能在最开始的时候就除k

不然的话对于k!=1时,会出错

//
//  main.cpp
//  bzoj2301
//
//  Created by New_Life on 16/7/6.
//  Copyright © 2016年 chenhuan001. All rights reserved.
//

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define N 100100

//--莫比乌斯反演函数--//
//说明:利用线性素数筛选顺便求了个mu
//复杂度:O(n)
int mu[N];

void mobus()
{
    bool mark[N];
    int prime[N];
    int pcnt=0;
    memset(mark,0,sizeof(mark));
    mu[1] = 1;
    for(int i=2;i<N;i++)
    {
        if(mark[i] == 0)
        {
            prime[pcnt++] = i;
            mu[i] = -1;
        }
        for(int j=0;j<pcnt && i*prime[j]<N;j++)
        {
            int tmp = i*prime[j];
            mark[tmp] = 1;
            if( i%prime[j] == 0 )
            {
                mu[tmp] = 0;
                break;
            }

            mu[tmp] = mu[i]*-1;
        }
    }
}

int sum[N];

long long gaobili(int b,int d)
{
    if(b<=0||d<=0) return 0;
    int m = min(b,d);
    long long ans = 0;
    while(m>=1)
    {
        int tb = b/( b/m +1 )+1;
        int td = d/( d/m +1 )+1;
        //前进的最大位置
        int tm = max(tb,td);
        ans += (long long)(sum[m]-sum[tm-1])*(b/m)*(d/m);
        m = tm-1;
    }
    return ans;
}

int main() {
    mobus();
    for(int i=1;i<N;i++)
        sum[i] += sum[i-1]+mu[i];
    int T;
    cin>>T;
    while(T--)
    {
        int a,b,c,d,k;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        //a/=k; b/=k; c/=k; d/=k;//这里很关键
        //搞bd
        long long ans = gaobili(b/k, d/k)-gaobili((a-1)/k, d/k)-gaobili(b/k, (c-1)/k)+gaobili((a-1)/k, (c-1)/k);
        printf("%lld\n",ans);
    }
    return 0;
}
/*
2
2 5 1 5 1
1 5 1 5 2

 */
时间: 2024-10-21 03:18:19

bzoj2301(莫比乌斯反演)的相关文章

[BZOJ1101&amp;BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x,y中都有n这个因子就好了,也就是[a/n]*[b/n]个数对(向下取整) 然后设题中所要求的为f[n],很容易得知,F[n]=∑f[d](n|d) 莫比乌斯反演可以得到f[n]=∑μ(d/n)F[d](n|d) 这样是O(n),然而数据范围5*10^4显然不能通过 f[n]=∑μ(d/n)[a/d][b/d]

bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反

BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演 但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时 然后进行分块优化,时间复杂度是O(n*sqrt(n)) #include<cstdio> #include<cstring> #include<queue

bzoj2301(莫比乌斯反演+分块)

传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 分析:gcd(x,y)==k等价于gcd(x/k,y/k)==1,根据莫比乌斯反演很容易求出[1,n][1,m]的gcd(x,y)==1的对数,但询问有50000个,直接去计算肯定会TLE,这里得分块处理加速计算,因为对于(n/i)和(m/i)在一定区间内的值是一定的,根据这点可以每

[HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? 很简单,容斥原理搞之 我们设f(x,y)代表gcd(i,j)==e(1<=i<=x,1<=j<=y)的无序数对(i,j)的个数 那么本题答案相当于f(d,b)-f(c-1,b)-f(a-1,d)+f(a-1,c-1) 再来看反演超时的问题 我们注意到原反演过程中,f(1)==mu(i)

算法学习——莫比乌斯反演(1)

.. 省选GG了,我果然还是太菜了.. 突然想讲莫比乌斯反演了 那就讲吧! 首先我们看一个等式-- (d|n表示d是n的约束) 然后呢,转换一下 于是,我们就发现! 没错!F的系数是有规律的! 规律is here! 公式: 这个有什么卵用呢? 假如说有一道题 F(n)可以很simple的求出来而求f(n)就比较difficult了,该怎么办呢? 然后就可以用上面的式子了 是莫比乌斯函数,十分有趣 定义如下: 若d=1,则=1 若d=p1*p2*p3...*pk,且pi为互异素数,则=(-1)^k

BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究

bzoj 2820 / SPOJ PGCD 莫比乌斯反演

那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=

hdu1695(莫比乌斯反演)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意: 对于 a, b, c, d, k . 有 x 属于 [a, b],  y 属于 [c, d], 求 gcd(x, y) = k 的 x, y 的对数 . 其中 a = b = 1 . 注意: (x, y), (y, x) 算一种情况 . 思路: 莫比乌斯反演 可以参考一下: http://blog.csdn.net/lixuepeng_001/article/details/5057