BZOJ 1076 & 撞鸭递推

题意:  

  还是看原题题面好...

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随 机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常 小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉 这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

SOL:

  感觉这题还是非常显然的...n,k非常小。。。撞鸭一下倒着推。。。

  这题还是要倒着推,但原因非常显然,“现在决定不吃的宝物以后也不能再吃”,倒着推满足前提条件,与一般情况下的求期望还是感觉有一点不一样。。。反正对于期望为什么要倒着推这一点总是很雾。。。感觉知道了但是又不能很好地讲出来。。。

Code:

  

/*==========================================================================
# Last modified: 2016-03-22 18:19
# Filename: 3680.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> 

#include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector> 

#define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1] 

#define maxn 10010
#define maxm 100000
#define pi 3.1415926535898
#define _e 2.718281828459
#define INF 1070000000
using namespace std;
typedef long long ll;
typedef unsigned long long ull; 

template<class T> inline
void read(T& num) {
    bool start=false,neg=false;
    char c;
    num=0;
    while((c=getchar())!=EOF) {
        if(c==‘-‘) start=neg=true;
        else if(c>=‘0‘ && c<=‘9‘) {
            start=true;
            num=num*10+c-‘0‘;
        } else if(start) break;
    }
    if(neg) num=-num;
}
/*==================split line==================*/
ll p[20];
double f[105][100000];
int score[20],d[20];
int main(){
	//freopen("a.in","r",stdin);
	int k,n;
	read(k); read(n);
	p[1]=1;
	FORP(i,2,16) p[i]=p[i-1]*2;
	FORP(i,1,n){
		read(score[i]); int x; read(x);
		while (x!=0){
			//d[i][0]++; d[i][d[i][0]]=x;
			d[i]+=p[x];
			read(x);
		}
	}
	int cap=(1<<(n+1));
	FORM(i,k,1){
		FORP(j,0,cap){
			FORP(l,1,n){
				if ((d[l]&j)==d[l]) f[i][j]+=max(f[i+1][j],f[i+1][j|p[l]]+score[l]);
				else f[i][j]+=f[i+1][j];
			}
			f[i][j]/=(double)n;
		}
	}
	printf("%.6lf",f[1][0]);
}
时间: 2024-10-10 00:52:24

BZOJ 1076 & 撞鸭递推的相关文章

BZOJ 1002 FJOI2007 轮状病毒 递推+高精度

题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 110 using namespace std; struct abcd{ int to,next; bool ban; }table[M<<2]; int head[

BZOJ 1002: [FJOI2007]轮状病毒 递推/基尔霍夫矩阵树定理

f[n]=3*f[n-1]-f[n-2]+2 1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 2959  Solved: 1644 [Submit][Status][Discuss] Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Input 3 Sample Outpu

BZOJ 1002 + SPOJ 104 基尔霍夫矩阵 + 一个递推式。

BZOJ 1002 高精度 + 递推 f[1] = 1; f[2] = 5; f[i] = f[i - 1] * 3 - f[i - 2] + 2; SPOJ 104 裸 + 不用Mod 1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 #include <algorithm> 5 #include <iostream> 6 7 using namespace std;

BZOJ 1088 扫雷Mine (递推)

题解:如果确定了第一排前两个数,那么剩下的数是唯一确定的,所以只要分情况讨论即可. #include <cstdio> #include <cstring> int n,a[10010],s[10010]; int ans(int x){ memset(a,0,sizeof a); if(x==1)a[1]=1; if(x==2)a[2]=1; if(x==3)a[1]=a[2]=1; for(int i=2;i<=n-1;i++){ a[i+1]=s[i]-a[i]-a[i

BZOJ 1089 严格n元树 (递推+高精度)

题解:用a[i]表<=i时有几种树满足度数要求,那么这样就可以递归了,a[i]=a[i-1]^n+1.n个节点每个有a[i-1]种情况,那么将其相乘,最后加上1,因为深度为0也算一种.那么答案就是a[n]-a[n-1].然后就是高精度的问题了,发现很久没有现码高精度没手感了,连高进度加法进位都出了些问题,需要特别注意. #include <cstdio> #include <cstring> #include <algorithm> using namespace

【BZOJ】1088: [SCOI2005]扫雷Mine(递推)

http://www.lydsy.com/JudgeOnline/problem.php?id=1088 脑残去想递推去了... 对于每一个第二列的格子,考虑多种情况,然后转移.....QAQ 空间可以降到O(1)...我就不优化了.. 至于题解说的枚举第一行...orz完全想不到. 做法就是:(好麻烦,不说了...就是对应三个格子的状态然后转移 #include <cstdio> #include <cstring> #include <cmath> #include

NYOJ 1076 方案数量(公式 或 递推)

方案数量 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描述 给出一个N*M的棋盘,左下角坐标是(0,0),右上角坐标是(N,M),规定每次只能向上或者向右走,问从左下角走到右上角,一共有多少种方案.上图是一个4*3的棋盘. 输入 多组测试数据. 每组输入两个整数N,M(0≤N,M≤30). 输入0,0时表示结束,不做任何处理. 输出 对于每组测试数据,输出对应的方案数. 样例输入 4 3 2 2 0 0 样例输出 35 6 分析:这道题有2种做法. 一.推公式 ans

值得一做》关于数学与递推 BZOJ1002 (BZOJ第一页计划)(normal+)

什么都不说先甩题目 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不同的3轮状病毒,如下图所示 现给定n(N<=100),编程计算有多少个不同的n轮状病毒   Input 第一行有1个正整数n Output 计算出的不同的n轮状病毒数输出 S

【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

http://www.lydsy.com/JudgeOnline/problem.php?id=1089 想了好久的递推式,,,然后放弃了QAQ 神思路!orz 首先我们设$f[i]$表示深度最大为i的n元树的数目,注意,是最大深度为i! 那么易得递推式 f[i]=f[i-1]^n+1 前面表示子树的情况乘积,后面表示树为1层!因为1层是合法的!即没有子女! 然后答案就是 f[d]-f[d-1] !!!为什么要剪掉呢?因为看我们的转移,并不是深度为i,而是深度最大为i,那么为什么要这样减呢?理由