Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
问题:给定一个区间数组,插入一个新的区间元素。区间数组已经按照 区间开始值升序排序。
思路:
1. 找到左边第一个 intervals[i].end >= newInterval.start 的元素。
2. 若 intervals[i].start > newInterval.end,则在 i 位置插入 newInterval ,程序结束。否则,将后续所有 intervals[j].start <= newInterval.end (i <= j)的元素合并到 i 位置,intervals[i].start 取涉及合并的最小值, intervals[i].end 取涉及合并的最大值。
3. 将 i 后面没有涉及合并的元素往前移动,移动至紧跟 i 元素。
这道题的思路不难也比较直观,时间效率为 O(n),只是需要处理的边界情况比较多。例如有首部插入区间数组、尾部插入区间数组、以及完全覆盖的区间数组情况。
1 vector<Interval> insert(vector<Interval>& intervals, Interval newInterval) { 2 3 if (intervals.size() == 0) { 4 intervals.push_back(newInterval); 5 return intervals; 6 } 7 8 if (newInterval.end < intervals[0].start) { 9 intervals.insert(intervals.begin(), newInterval); 10 return intervals; 11 } 12 13 if (newInterval.start > intervals[intervals.size()-1].end) { 14 intervals.push_back(newInterval); 15 return intervals; 16 } 17 18 if (newInterval.start <= intervals[0].start && intervals[intervals.size()-1].end <= newInterval.end) { 19 intervals.clear(); 20 intervals.push_back(newInterval); 21 return intervals; 22 } 23 24 25 int len = (int)intervals.size(); 26 int i = 0; 27 for ( ; i < intervals.size(); i++) { 28 if (intervals[i].end >= newInterval.start) { 29 break; 30 } 31 } 32 int theIdx = i; 33 34 if (intervals[theIdx].start > newInterval.end) { 35 vector<Interval>::iterator nth = intervals.begin() + theIdx; 36 intervals.insert(nth, newInterval); 37 return intervals; 38 }else{ 39 intervals[theIdx].start = min( intervals[theIdx].start, newInterval.start); 40 41 } 42 43 while (i < intervals.size() && intervals[i].start <= newInterval.end) { 44 intervals[theIdx].end = max(intervals[i].end, newInterval.end); 45 i++; 46 } 47 48 int j = theIdx + 1; 49 50 while (i < intervals.size()) { 51 intervals[j] = intervals[i]; 52 i++; 53 j++; 54 } 55 56 while (j < len) { 57 intervals.pop_back(); 58 j++; 59 } 60 61 return intervals; 62 }