本文来自这里
在前面的概念介绍中我们已经知道了分析器的作用,就是把句子按照语义切分成一个个词语。英文切分已经有了很成熟的分析器: StandardAnalyzer,很多情况下StandardAnalyzer是个不错的选择。甚至你会发现StandardAnalyzer也能对中文进行分词。
但是我们的焦点是中文分词,StandardAnalyzer能支持中文分词吗?实践证明是可以的,但是效果并不好,搜索“如果”会把“牛奶不如果汁好喝”也搜索出来,而且索引文件很大。那么我们手头上还有什么分析器可以使用呢?core里面没有,我们可以在sandbox里面找到两个: ChineseAnalyzer和CJKAnalyzer。但是它们同样都有分词不准的问题。相比之下用StandardAnalyzer和 ChineseAnalyzer建立索引时间差不多,索引文件大小也差不多,CJKAnalyzer表现会差些,索引文件大且耗时比较长。
要解决问题,首先分析一下这三个分析器的分词方式。StandardAnalyzer和ChineseAnalyzer都是把句子按单个字切分,也就是说 “牛奶不如果汁好喝”会被它们切分成“牛 奶 不 如 果 汁 好 喝”;而CJKAnalyzer则会切分成“牛奶 奶不 不如 如果 果汁 汁好好喝”。这也就解释了为什么搜索“果汁”都能匹配这个句子。
以上分词的缺点至少有两个:匹配不准确和索引文件大。我们的目标是将上面的句子分解成“牛奶 不如 果汁好喝”。这里的关键就是语义识别,我们如何识别“牛奶”是一个词而“奶不”不是词语?我们很自然会想到基于词库的分词法,也就是我们先得到一个词库,里面列举了大部分词语,我们把句子按某种方式切分,当得到的词语与词库中的项匹配时,我们就认为这种切分是正确的。这样切词的过程就转变成匹配的过程,而匹配的方式最简单的有正向最大匹配和逆向最大匹配两种,说白了就是一个从句子开头向后进行匹配,一个从句子末尾向前进行匹配。基于词库的分词词库非常重要,词库的容量直接影响搜索结果,在相同词库的前提下,据说逆向最大匹配优于正向最大匹配。
当然还有别的分词方法,这本身就是一个学科,我这里也没有深入研究。回到具体应用,我们的目标是能找到成熟的、现成的分词工具,避免重新发明车轮。经过网上搜索,用的比较多的是中科院的ICTCLAS和一个不开放源码但是免费的JE-Analysis。ICTCLAS有个问题是它是一个动态链接库, java调用需要本地方法调用,不方便也有安全隐患,而且口碑也确实不大好。JE-Analysis效果还不错,当然也会有分词不准的地方,相比比较方便放心。
lucene-一篇分词器介绍很好理解的文章
时间: 2024-10-10 16:20:55
lucene-一篇分词器介绍很好理解的文章的相关文章
全文检索之lucene的优化篇--分词器
在创建索引库的基础上,加上中文分词器的,更好的支持中文的查询.引入jar包je-analysis-1.5.3.jar,极易分词.还是先看目录. 建立一个分词器的包,analyzer,准备一个AnalyzerTest的类.里面的代码如下,主要写了一个testAnalyzer的方法,测试多种分词器对于中文和英文的分词;为了可以看到效果,所以写了个analyze()的方法,将分词器和text文本内容传入,并将分词的效果显示出来. package com.lucene.analyzer; import
基于lucene的案例开发:分词器介绍
转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/42916755 在lucene创建索引的过程中,数据信息的处理是一个十分重要的过程,在这一过程中,主要的部分就是这一篇博客的主题:分词器.在下面简单的demo中,介绍了7中比较常见的分词技术,即:CJKAnalyzer.KeywordAnalyzer.SimpleAnalyzer.StopAnalyzer.WhitespaceAnalyzer.StandardAnalyzer.I
重写lucene.net的分词器支持3.0.3.0版本
lucene.net中每个分词器都是一个类,同时有一个辅助类,这个辅助类完成分词的大部分逻辑.分词类以Analyzer结尾,辅助类通常以Tokenizer结尾.分类词全部继承自Analyzer类,辅助类通常也会继承某个类. 首先在Analysis文件夹下建立两个类,EasyAnalyzer和EasyTokenizer. 1 using Lucene.Net.Analysis; 2 using System.IO; 3 4 namespace LuceneNetTest 5 { 6 public
搜索引擎系列四:Lucene提供的分词器、IKAnalyze中文分词器集成
一.Lucene提供的分词器StandardAnalyzer和SmartChineseAnalyzer 1.新建一个测试Lucene提供的分词器的maven项目LuceneAnalyzer 2. 在pom.xml里面引入如下依赖 <!-- lucene 核心模块 --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-core</artifactId&
lucene构建同义词分词器
lucene4.0版本号以后 已经用TokenStreamComponents 代替了TokenStream流.里面包含了filter和tokenizer 在较复杂的lucene搜索业务场景下,直接网上下载一个作为项目的分词器,是不够的.那么怎么去评定一个中文分词器的好与差:一般来讲.有两个点.词库和搜索效率,也就是算法. lucene的倒排列表中,不同的分词单元有不同的PositionIncrementAttribute,假设两个词之间PositionIncrementAttribute距离
Lucene的中文分词器IKAnalyzer
分词器对英文的支持是非常好的. 一般分词经过的流程: 1)切分关键词 2)去除停用词 3)把英文单词转为小写 但是老外写的分词器对中文分词一般都是单字分词,分词的效果不好. 国人林良益写的IK Analyzer应该是最好的Lucene中文分词器之一,而且随着Lucene的版本更新而不断更新,目前已更新到IK Analyzer 2012版本. IK Analyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包.到现在,IK发展为面向Java的公用分词组件,独立于Lucene项目,同时
Lucene实现自定义分词器(同义词查询与高亮)
今天我们实现一个简单的分词器,仅仅做演示使用功能如下: 1.分词按照空格.横杠.点号进行拆分: 2.实现hi与hello的同义词查询功能: 3.实现hi与hello同义词的高亮显示: MyAnalyzer实现代码: public class MyAnalyzer extends Analyzer { private int analyzerType; public MyAnalyzer(int type) { super(); analyzerType = type; } @Override p
(06)ElasticSearch 分词器介绍及安装中文分词器
分词器是用来实现分词的,从一串文本当中切分出一个一个的单词(词条),并对每个词条进行标准化处理(大小写.单复数.同义词等转换).分词器包括3部分: 1.character filter:分词之前的预处理,过滤掉html标签,特殊符号转换等. 2.tokenizer:分词, 3.token filter:标准化 ElasticSearch内置分词器: 1.standard分词器:(默认分词器)它会将词汇单元转换成小写形式,并除去停用词(a.an.the等)和标点符号,支持中文采用的方法为单字切分.
es学习(三):分词器介绍以及中文分词器ik的安装与使用
什么是分词 把文本转换为一个个的单词,分词称之为analysis.es默认只对英文语句做分词,中文不支持,每个中文字都会被拆分为独立的个体. 示例 POST http://192.168.247.8:9200/_analyze { "analyzer":"standard", "text":"good good study" } # 返回 { "tokens": [ { "token":