平衡二叉树(AVL Tree)

在学习算法的过程中,二叉平衡树是一定会碰到的,这篇博文尽可能简明易懂的介绍下二叉树的相关概念,然后着重讲下什么事平衡二叉树。

(由于作图的时候忽略了箭头的问题,正常的树一般没有箭头,虽然不影响描述的过程,但是还是需要注意,所以还请读者忽略一下部分图的箭头)

一、二叉(查找)树

二叉查找树(Binary Search Tree)是二叉树的一种,其树节点(internal nodes of the tree)储存着键值并且满足以下特性并如图A所示:

  • 假设u, v, r分别为树的三个结点(nodes),r为树的根节点,u为根的左子树,v为根结点的右子树;
  • 键值大小关系:key(u) < key(r) < key(v),也就是位于根结点(亦或是父节点)的左子树的所有结点的值都是小于根或者父结点的,而位于右子树的结点都大于根或者父结点;
  • 树的外部结点不储存任何的信息。

图A 二叉查找树

二、二叉查找树的操作

2.1 查找(Search)

如若要查找二叉树中的某个元素k,我们会从根节点朝着树结构往下寻找对应的结点,所寻找的结点方向取决于当前结点与所要寻找的结点的值的对比。基于图A,假设我们现在所要寻找的结点是7,那么从根结点开始,我们可以知道7 < 8,那么往下朝着结点值为6的子树走,然后我们发现6 < 7所以此时我们就寻找结点为6的右子树,这时我们发现7 = 7,也就是到达了我们所要寻找的结点了,下图B是寻找结点的过程:

图B 二叉树查找过程

算法伪代码:

BSTreeSearch(k, v):
if T.isExternal(v):
    return v
elif k < key(v):
    return BSTreeSearch(k, T.left(v))
elif k == key(v):
    return v
else k > key(v):
    return BSTreeSearch(k, T.right(v))

2.2 插入(Insertion)

如果要执行插入操作,我们首先需要对树进行查找操作,找到相应的节点的叶子(leaf)结点,然后再执行插入操作。下面以插入5位例子进行执行,如果要插入5,执行2.1节中所说的二叉树的查找操作,我们可以发现5 < 8,5 < 6,5 > 4,这时我们可以发现最终5是大于4的,那么我们需要在4的右叶子结点插入5,并且延伸新插入的结点(5)的叶子结点。具体操作如下图C所示:

图C 二叉树插入操作

2.3 删除(Deletion)

相应的执行删除操作,我们也先需要查找到相对应的结点,然后将该结点从二叉树中移除(remove),实际代码实现中需要判断要删除的结点的键值是否存在于二叉树中,除此之外,如果该结点伴有叶子结点,那么需要将该结点和叶子结点一同移除。当然,这里亦有另外一种情况,就是被移除的结点的左右子树都是内部结点(internal nodes),这个时候的操作会稍微复杂一点,这里以删除4和6为例子来讲述这两种情况,具体的操作如图D(基于图C进行操作)所示:

图D 删除操作

删除结点4的操作相对简单,只需要移除该结点和相应的叶子节点即可,但是相反的删除6的时候,我们需要确保所有父结点的左子树都是小于该结点的,并且右子树都是大于该父结点的,所以当我们删除6的时候,我们需要将5移到相应的位置并在相应的叶子结点补上新的叶子。

2.4 算法表现(Performance)

假设一个二叉树的高度为H,最坏的操作情况是O(n),而最好执行情况则为O(log(n))。

三、二叉平衡树(AVL TREE)

3.1 平衡二叉树的定义

二叉平衡树指的是要么它本身是一个空树,要么它是一个左子树和右子树的深度之差的绝对值不大于1,并且保证左右子树都是平衡树,图E是一个平衡二叉树。从图中我们可以看出,一个结点的高度位1则表明为其叶子结点到父结点的高度,整颗树的高度取决于最深叶子结点到根结点的距离。

图E 平衡二叉树

3.2 平衡二叉树的操作

AVL树的查找操作和普通的二叉树的查找基本一致,但是插入和删除操作有所不同,因为插入和删除会减少树的结点并且改变树的结构,这个时候为了使树始终保持平衡状态我们需要对树进行重构使其始终保持平衡状态,一般这个操作叫做旋转操作(rotation),旋转分为左旋转和右旋转等,下面就具体来看看插入和删除操作及如何运用旋转使二叉平衡树在插入和删除某结点之后依然保持平衡。

3.2.1 旋转操作

在这个小节中主要介绍一下左旋转和右旋转,旋转操作不局限于这两个,但是基本原理都一样,最终目的就是为了让二叉平衡树在被操作之后再次达到平衡。

图F 左旋转

在上图所说的左旋转操作中,我们假设的是x < y < z,因为树不平衡了,我们执行左旋转,将x及其左子树进行左旋转,并且将原本y的左子树变为x的右子树,这里需要注意的两点,①就是我们需要寻找到三个点,这三个点的大小是有排序的,如这此段开头所说道的xyz的关系,将中间那个值作为新的中心结点,然后再进行旋转操作,②就是一定要确保所有的左右子树遵循二叉树的定义要求,既左子树一定要永远都是小于其父结点的,而右子树始终大于父结点的。

图G 右旋转

图G所述的三个节点的关系为z < x < y,因此根据左旋转所描述的我们可以知道x应该作为中心结点也就是父结点,然后这里需要进行两次旋转才能使二叉树最终处于平衡,首先是先对z进行左旋转,将z变为x的左子树,然后再对y进行右旋转,在这个过程中,x的左子树变为z的右子树,而右子树则成为了y的左子树。有了基本的这两个操作,接下来我们就根据实际例子来看看对平衡二叉树执行插入和删除的操作并且结合旋转来达到平衡状态。

3.2.2 插入操作

平衡二叉树的插入操作与普通二叉查找树的操作一样,新插入的节点都发生在叶子结点,唯一不同的就如上述所说,新插入的结点致使树的结构发生改变而导致不平衡,此时需要进行旋转以达到平衡。在图E的基础上插入一个新结点,结点的值为40,新得到的图如图H所示:

图H 插入新的节点Key(40)

这时我们会发现此时的二叉树已经不平衡,这时我们需要寻找到树里面导致树不平衡的三个点,进行相应的操作,具体有以下两步:① 先对结点39以结点42为父结点进行左旋转,此时节点40变成了39的右结点,而33,39,40一起成为了结点42的左子树。② 对结点53进行右旋转,将其变成节点42的右子树,结点55依然为结点53的右子树。由此便完成了整棵树的重构并让新的树保持平衡。重构之后的树如下图I所示:

图I 重构之后得到的树

3.2.3 删除操作

假设在图I的基础上删除结点22,那么此时我们从节点19开始便利找到第一个导致不平衡的结点为25并且具有最大高度值的结点,之后往右子树进行便利寻找到第二个具有最大高度值的结点,此结点为42(下图标注了红色边框的结点),

图J 删除之后进行重构流程图

3.2.4 二叉平衡树的算法表现

二叉平衡树的算法表现主要体现在以下几个方面:

  • 如果单独重构一次所需要的运行时间为O(1)
  • 如果查找二叉平衡树中某个结点的话为O(log(n))
  • 插入操作为O(log(n)),若需要重构,为了保持平衡所需要的时间为O(log(n))
  • 删除操作为O(log(n)),若需要重构,为了保持平衡所需要的时间为O(log(n))

以上便是有关二叉树和二叉平衡树相关的知识点,如果有哪里讲的不对的,还请读者指出,谢谢!

原文地址:https://www.cnblogs.com/jielongAI/p/9565776.html

时间: 2024-11-05 14:26:45

平衡二叉树(AVL Tree)的相关文章

Geeks - AVL Tree Insertion 平衡二叉树

AVL可以保证搜索达到O(lgn)的时间效率,因为两边的树高都差不多.不会出现搜索是线性的最坏情况. 但是AVL在插入和删除节点的时候需要做较多的旋转操作,所以如果修改节点多的时候,最好使用红黑树,但是如果搜索多的时候,就最好使用AVL了. 参考:http://www.geeksforgeeks.org/avl-tree-set-1-insertion/ 注意点: 1 判断关键字和节点的孩子节点的大小判断应该是左转还是右转 2 利用递归就不需要记录父母节点了 3 注意更新balance和判断ba

Geeks - AVL Tree Deletion 平衡二叉树 删除操作

在工作中的经常使用repo命令,但是有时会忘记一些命令和遇到的一些问题,记录下来方便已经查询. 常见问题: 问题1:找不到命令:repo 方法: 在下载android源码的时候用repo时提示找不到命令,可以用如下方法解决,在命令行中输入如下两行: echo 'export PATH=$PATH:$Home/bin' >>~/.bashrc export PATH=$PATH:$HOME/bin 问题2: /home/xxxxxx/bin/repo: line 1: 在未预料的"ne

PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***

1066 Root of AVL Tree (25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this

平衡二叉树 AVL 的插入节点后旋转方法分析

平衡二叉树 AVL( 发明者为Adel'son-Vel'skii 和 Landis)是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 首先我们知道,当插入一个节点,从此插入点到树根节点路径上的所有节点的平衡都可能被打破,如何解决这个问题呢? 这里不讲大多数书上提的什么平衡因子,什么最小不平衡子树,实际上让人(me)更加费解.实际上你首要做的就是先找到第一个出现不平衡的节点,也就是高度最高的那个节点A,对以它为根的子树做一次旋转或者两次旋转,此时这个节点的平衡问题解决了,整个往

数据结构复习之平衡二叉树AVL插入

平衡二叉树(Balancedbinary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskiiand Landis)于1962年首先提出的,所以又称为AVL树. 定义:平衡二叉树或为空树,或为如下性质的二叉排序树: (1)左右子树深度之差的绝对值不超过1; (2)左右子树仍然为平衡二叉树. 平衡二叉树可以避免排序二叉树深度上的极度恶化,使树的高度维持在O(logn)来提高检索效率. 因为插入节点导致整个二叉树失去平衡分成如下的四种情况: 假设由于在二叉排序树上插入节点而失去平衡

PAT1066. Root of AVL Tree

An AVL tree is a self-balancing binary search tree.  In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.  Figures 1-4 illu

数据结构快速回顾——平衡二叉树 AVL (转)

平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树.平衡二叉树要求对于每一个节点来说,它的左右子树的高度之差不能超过1,如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态.这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(

STL源码笔记(18)—平衡二叉树AVL(C++封装+模板)

AVLTree平衡二叉树 在几年前刚学数据结构时,AVL-Tree只是一个仅仅需要掌握其概念的东西,今非昔比,借看STL源码剖析的契机希望从代码层面将其拿下. 1.简介 二叉查找树给我们带来了很多方便,但是由于其在有序序列插入时就会退化成单链表(时间复杂度退化成 O(n)),AVL-tree就克服了上述困难.AVL-tree是一个"加上了平衡条件的"二叉搜索树,平衡条件确保整棵树的深度为O(log n). AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差

pat04-树4. Root of AVL Tree (25)

04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any tim