Deep Active Learning 深度主动学习

Deep Active Learning

最上方为监督学习,对面为非监督学习,之间包括增强学习、半监督学习、在线学习、主动学习。

Supervised Learing

将未标记的数据交给Work进行标记,然后将标记数据交给Learner进行训练。

Semi-Supervised Learning

在监督学习的基础上加了一条线,也就是把大量的未标记数据和少量的标记数据交给Learner进行训练,这样可以减少人工标记的时间。

Active Learning

通过Learner来决定哪些数据需要被标记,然后交给Work进行标记,重新训练Learner。

主动学习分为三种:

①membership query synthesis:由模型生成新的样本,可以决定生成样本的分布。

②stream-based selective sampling:一个一个的选择未标记样本,由模型来决定是否进行标记。

③pool-based sampling:数据储存在池中,从池中选择未标记样本进行标记。

伪代码

           

方法:

1.

1-预测出来的概率值,值为0.5时认为它具有更大的不确定性(针对二分类)。

2.

每个点的概率用每个点的概率输出的log值的求和来代替

3.

在预测时使用dropout运行M次,查看M次结果有多少次不一致。

具体:http://www.mooc.ai/course/487/learn?lessonid=2671#lesson/2671

原文地址:https://www.cnblogs.com/ldh-up/p/11277272.html

时间: 2024-10-07 12:48:39

Deep Active Learning 深度主动学习的相关文章

Deep Reinforcement Learning 深度增强学习资源

1 学习资料 增强学习课程 David Silver (有视频和ppt): http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html 最好的增强学习教材: Reinforcement Learning: An Introduction https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html 深度学习课程 (有视频有ppt有作业) https://www.cs.ox.ac.uk/p

【干货总结】| Deep Reinforcement Learning 深度强化学习

在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强化学习就是决策,它通过对周围的环境不断的更新状态,给出奖励或者惩罚的措施,来不断调整并给出新的策略.简单来说,就像小时候你在不该吃零食的时间偷吃了零食,你妈妈知道了会对你做出惩罚,那么下一次就不会犯同样的错误,如果遵守规则,那你妈妈兴许会给你一些奖励,最终的目标都是希望你在该吃饭的时候吃饭,该吃零食

【阅读笔记】Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation

Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation 作者:Lin Yang, Yizhe Zhang, Jianxu Chen, Siyuan Zhang, Danny Z. Chen 针对问题: 1.医学方向训练集数据较少 2.仅专业人士能进行标注,耗费人力物力,数据集数量难以快速提升 贡献点: 1.提出了新的全卷积网络(FCN),在测试数据集上取得了很好的结果 2.

简要介绍Active Learning(主动学习)思想框架,以及从IF(isolation forest)衍生出来的算法:FBIF(Feedback-Guided Anomaly Discovery)

1. 引言 本文所讨论的内容为笔者对外文文献的翻译,并加入了笔者自己的理解和总结,文中涉及到的原始外文论文和相关学习链接我会放在reference里,另外,推荐读者朋友购买 Stephen Boyd的<凸优化>Convex Optimization这本书,封面一半橘黄色一半白色的,有国内学者翻译成了中文版,淘宝可以买到.这本书非常美妙,能让你系统地学习机器学习算法背后蕴含的优化理论,体会数学之美. 本文主要围绕下面这篇paper展开内涵和外延的讨论: [1] Siddiqui M A, Fer

[Mechine Learning] Active Learning

1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi-supervised learning)是三类研究比较多,应用比较广的学习技术,wiki上对这三种学习的简单描述如下: 监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类. 非监督学习:直接对输入数据集进行建模,例如聚类. 半监督学习:综合利

深度强化学习(Deep Reinforcement Learning)入门:RL base &amp; DQN-DDPG-A3C introduction

转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他

机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本

深度强化学习(Deep Reinforcement Learning)的资源

来源:http://wanghaitao8118.blog.163.com/blog/static/13986977220153811210319/ Google的Deep Mind团队2013年在NIPS上发表了一篇牛x闪闪的文章,亮瞎了好多人眼睛,不幸的是我也在其中.前一段时间收集了好多关于这方面的资料,一直躺在收藏夹中,目前正在做一些相关的工作(希望有小伙伴一起交流). 一.相关文章 关于DRL,这方面的工作基本应该是随着深度学习的爆红最近才兴起的,做这方面的研究的一般都是人工智能领域的大

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 3实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 DBN实例 //****************例2(读取固定样本:来源于经典优化算法測试函数Sphere Model)***********// //2 读取样本数据 Logge