Luogu P4593 [TJOI2018]教科书般的亵渎

亵渎终于离开标准了,然而铺场快攻也变少了

给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233

首先简单数学分析可以得出\(k=m+1\),因为每多一个空缺就会打断一张亵渎的连击

那么我们考虑对于每个空缺求出答案,发现此时所求答案必定为一段自然数幂和并且减去空缺的数字幂

发现数据范围\(m\le 50\),那么我们直接暴力求出所有连续的段,然后大力枚举这一段开始最低的怪的血量

空缺不妨暴力枚举,区间内的自然数幂和直接差分一下,那么我们只要能快速求出\(S(n)=\sum_{i=1}^n i^k\)即可

这里用了第二类斯特林数的推法,\(S(n)=\sum_{i=1}^n i^k=\sum_{i=0}^n i^k\)

\[=\sum_{i=0}^n\sum_{j=0}^k\{ _j^k\}i^{\underline j}\]

\[=\sum_{j=0}^k\{ _j^k\}\sum_{i=0}^ni^{\underline j}\]

\[=\sum_{j=0}^k\{ _j^k\}j!\sum_{i=0}^n C_i^j\]

用归纳法,得\(\sum_{i=0}^n C_i^j=C_{n+1}^{j+1}\),所以上式

\[=\sum_{j=0}^k\{ _j^k\}j!C_{n+1}^{j+1}\]

\[=\sum_{j=0}^k\{ _j^k\}\frac{(n+1)^{\underline{j+1}}}{j+1}\]

所以我们预处理出组合数和第二类斯特林数,这部分就是\(O(k^2)\)计算的

因此总复杂度上界为\(O(k^4)\),实际在\(O(k^3)\)左右(空缺不连续)

CODE

#include<cstdio>
#include<map>
#include<algorithm>
#define RI register int
#define CI const int&
using namespace std;
typedef long long LL;
const int N=55,mod=1e9+7;
int t,n,m,ans,cnt,pfx[N],s[N][N]; LL a[N],pos[N]; map <LL,int> ts;
inline void inc(int& x,CI y)
{
    if ((x+=y)>=mod) x-=mod;
}
inline void dec(int& x,CI y)
{
    if ((x-=y)<0) x+=mod;
}
inline void Stirling_init(CI n)
{
    s[0][0]=1; for (RI i=1;i<=n;++i) for (RI j=1;j<=i;++j)
    s[i][j]=s[i-1][j-1],inc(s[i][j],1LL*j*s[i-1][j]%mod);
}
inline int quick_pow(int x,int p=mod-2,int mul=1)
{
    for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
inline int low_fact(const LL& x,CI t,int ret=1)
{
    for (RI i=1;i<=t;++i) ret=1LL*ret*(x-i+1)%mod; return ret;
}
inline int pow_sum(const LL& x,CI k,int ret=0)
{
    for (RI i=1;i<=k;++i) inc(ret,1LL*s[k][i]*low_fact(x+1,i+1)%mod*quick_pow(i+1)%mod); return ret;
}
inline int calc(CI x,const LL& y,CI k)
{
    int ret=pow_sum(y,k); dec(ret,pow_sum(x-1,k)); return ret;
}
inline int none_sum(CI st,const LL& lim,CI k,int ret=0)
{
    for (RI i=1;i<=m;++i) if (a[i]>=lim) inc(ret,quick_pow(st+a[i]-lim,k)); return ret;
}
int main()
{
    for (scanf("%d",&t);t;--t)
    {
        RI i,j; for (ts.clear(),scanf("%d%d",&n,&m),i=1;i<=m;++i) scanf("%lld",&a[i]),ts[a[i]]=1;
        for (sort(a+1,a+m+1),pos[cnt=i=1]=pfx[1]=1;i<=m;++i) if (a[i]!=n)
        if (ts.count(a[i]+1)) ts[a[i]+1]+=ts[a[i]]; else pos[++cnt]=a[i]+1,pfx[cnt]=ts[a[i]];
        for (ans=0,Stirling_init(m+1),i=1;i<=cnt;++i) for (j=1;j<=pfx[i];++j)
        inc(ans,calc(j,j+n-pos[i],m+1)),dec(ans,none_sum(j,pos[i],m+1)); printf("%d\n",ans);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/cjjsb/p/10945222.html

时间: 2024-10-10 16:42:54

Luogu P4593 [TJOI2018]教科书般的亵渎的相关文章

洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】

题目链接 洛谷P4593 题解 这种神仙数学题我当然不会做.. orz dalao 不过推导倒是挺简单 由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{k}\)这样的前缀和计算 我不知道怎么来的这样一个公式[如果有那位dalao知道欢迎留言]: \[(n + 1)^{k + 1} - n^{k + 1} = \sum\limits_{i = 1}^{k + 1} {k + 1\choose i}n^{k + 1 - i}\] 我们发现这

P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如果求\(\sum_{i=1}^ni^k\) 据attack巨巨说,上面那个东西是一个以\(n\)为自变量的\(k+1\)次多项式,因为我们只需要单点求值,所以可以先求出\(k+2\)个值,然后就可以用拉格朗日插值来每次\(O(k)\)地求出一个值 至于这里是如何优化到\(O(k)\)的,本来拉格朗日

P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

题目描述 小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为aia_iai?,且每个怪物血量均不相同,小豆手里有无限张“亵渎”.亵渎的效果是对所有的怪造成111点伤害,如果有怪死亡,则再次施放该法术.我们认为血量为000怪物死亡. 小豆使用一张 “亵渎”会获得一定的分数,分数计算如下,在使用一张“亵渎”之后,每一个被亵渎造成伤害的怪会产生xkx^kxk,其中xxx是造成伤害前怪的血量为xxx和需要杀死所有怪物所需的“亵渎”的张数kkk. 输入输出格式 输入格式: 第一行输入一个TT

[TJOI2018]教科书般的亵渎

传送门 做这道题的时候超级有画面感-- 这道题其实不是很难--只要掌握了结论就不是什么问题,不过我因为推错了还是做了好长时间-- 题目其实就是要求你重复多次求 \[\sum_{i=1}^n i^{m+1}\] 以前有大神写论文告诉我们,这个式子是一个以\(n\)为自变量的\(k+1\)(\(k\)是指数)次多项式,那么我们就可以用拉格朗日插值求一下. 这题的数据范围很小,所以其实可以不使用\(O(n)\)的算法,直接普通的求也是可以过的.然后注意要删去不存在的血量给答案的贡献,因为每次释放亵渎以

【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)

传送门 题意: 一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\). 然后有\(m\)种没有出现的血量,\(m\leq 50\). 现在有个人可以使用魔法卡片,使用一张会使得所有的怪兽掉一点血,如果有怪兽死亡,则继续施展魔法. 这个人能够获得一定的分数,分数计算如下,每一次使用卡片前,假设一个怪兽血量为\(x\),那么获得\(x^k\)的分数.\(k\)为杀死所有怪兽需要的卡片数量. 求最后总的分数. 思路: 因为\(m\)很小,那么我们可

教科书般的亵渎

环境里有 $n$ 个怪物,他们的生命值用一个正整数表示.现在,你可以使用两种魔法,对怪物进行攻击.当怪物的生命值小于等于 $0$ 时,他便被消灭了. 魔法箭,对摸个生物造成 $k$ 点伤害,对一个生物最多使用一次,但没有使用次数限制. 亵渎,对所有生物造成一点伤害,如果杀死了某个生物,则继续自动重新使用该法术.只能主动使用一次,且必须最后使用. 请问,最多能消灭多少个怪物?亵渎法术最多能释放几次? 输入格式 第一行两个整数 $n$ 和 $k$ ,表示怪物的数量和法术的伤害.第二行 $n$ 个正整

计蒜客 教科书般的亵渎

Description: 环境里有 nn 个怪物,他们的生命值用一个正整数表示.现在,你可以使用两种魔法,对怪物进行攻击.当怪物的生命值小于等于 00 时,他便被消灭了. 魔法箭,对摸个生物造成 kk 点伤害,对一个生物最多使用一次,但没有使用次数限制. 亵渎,对所有生物造成一点伤害,如果杀死了某个生物,则继续自动重新使用该法术.只能主动使用一次,且必须最后使用. 请问,最多能消灭多少个怪物?亵渎法术最多能释放几次? Input: 第一行两个整数 nn 和 kk ,表示怪物的数量和法术的伤害.第

【题解】Luogu P4588 [TJOI2018]数学计算

原题传送门 这题是线段树的模板题 显而易见,直接模拟是不好模拟的(取模后就不好再除了) 我们按照时间来建一颗线段树 线段树初始值都为1,用来维护乘积 第一种操作就在当前时间所对应的节点上把乘数改成m 第二种操作就是把第pos个节点的乘数该回1 每次询问的答案就是线段树根节点维护的数值(pushup时要取模) #include <bits/stdc++.h> #define N 100005 #define ll long long #define getchar nc using namesp

TJOI2018

好像被老张坑了,TJ省选怎么出六道送分题啊..... d1t1[TJOI2018]数学计算 线段树模板题. //Achen #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<vector> #include<cstdio> #include<queue> #include<cmath> #inc