贪心算法——间隔任务规划——python

间隔任务规划

问题描述

• 输?为 n  个报告集 R=[r1, …… , rn],以及每?个报 告的开始不结束时间 ri=[ai, bi]

• 输出:最多的相容报告集

• 两个报告相容:即两报告的发?时间??没有重合

贪心策略

  每次选择结束时间最早的报告

def get_max_intervalschedule(joblist):
    job_schedule = []
    num_job = len(joblist)
    joblist.sort(key = lambda x: x[2]) #按照结束时间进行排序

    for n in range(num_job):
        if not len(job_schedule):
            job_schedule.append(joblist[n])
        else:
            #job(n)是否与job_schedule中的jobs相容
            if job_schedule[-1][2] <= joblist[n][1]:
            #如果job_schedule中最后一个任务的结束时间小于joblist的开始时间
                job_schedule.append(joblist[n])

    return job_schedule

if __name__ == "__main__":
    joblist = [["e", 8, 10], ["b", 2, 5],
               ["c", 4, 7],["a", 1, 3],
               ["d", 6, 9]
               ]
    print(get_max_intervalschedule(joblist

输出结果

[[‘a‘, 1, 3], [‘c‘, 4, 7], [‘e‘, 8, 10]]

贪心算法需要证明结果是否正确

原文地址:https://www.cnblogs.com/tangxinghe/p/11128168.html

时间: 2024-10-30 14:38:16

贪心算法——间隔任务规划——python的相关文章

python常用算法(6)——贪心算法,欧几里得算法

1,贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的的时在某种意义上的局部最优解. 贪心算法并不保证会得到最优解,但是在某些问题上贪心算法的解就是最优解.要会判断一个问题能否用贪心算法来计算.贪心算法和其他算法比较有明显的区别,动态规划每次都是综合所有问题的子问题的解得到当前的最优解(全局最优解),而不是贪心地选择:回溯法是尝试选择一条路,如果选择错了的话可以“反悔”,也就是回过头来重新选择其他的试试. 1.1

贪心算法之活动分配问题

贪心算法之活动分配问题 在此之前,我们还讨论过贪心算法的活动选择问题,活动选择问题里面的选择策略在这篇文章里面作为贪心选择策略用到.好吧,让我们进入主题. 问题描述 有一个活动集合S={a1,a2,a3,...an},每一个活动ai都有一个开始时间si和结束时间fi,那么活动ai占用的时间段为[si,fi).如果活动ai和aj的时间段没有交集重叠,那么这两个活动是兼容的,即满足si≤fj或者fi≥sj,[ai,aj]就是兼容的.现在我们需要为这些活动安排教室,保证活动之间各不冲突.请问怎么安排才

机器学习经典算法详解及Python实现--决策树(Decision Tree)

(一)认识决策树 1,决策树分类原理 近来的调查表明决策树也是最经常使用的数据挖掘算法,它的概念非常简单.决策树算法之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它是如何工作的.直观看上去,决策树分类器就像判断模块和终止块组成的流程图,终止块表示分类结果(也就是树的叶子).判断模块表示对一个特征取值的判断(该特征有几个值,判断模块就有几个分支). 如果不考虑效率等,那么样本所有特征的判断级联起来终会将某一个样本分到一个类终止块上.实际上,样本所有特征中有一些特征

机器学习经典算法详解及Python实现--基于SMO的SVM分类器

原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些

POJ1017 Packets(贪心算法训练)

Time Limit: 1000MS          Memory Limit: 10000K          Total Submissions: 51306          Accepted: 17391 Description A factory produces products packed in square packets of the same height h and of the sizes 1*1, 2*2, 3*3, 4*4, 5*5, 6*6. These pro

贪心算法的简述与示例

贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯.能够用贪心算法求解的问题一般具有两个重要特性:贪心选择性质和最优子结构性质. 参考:http://babybandf.blog.163.com/blog/static/61993532010112923767/ [例1]删数问题[B][/B] 试题描

算法导论——lec 13 贪心算法与图上算法

之前我们介绍了用动态规划的方法来解决一些最优化的问题.但对于有些最优化问题来说,用动态规划就是"高射炮打蚊子",采用一些更加简单有效的方法就可以解决.贪心算法就是其中之一.贪心算法是使所做的选择看起来是当前最佳的,期望通过所做的局部最优选择来产生一个全局最优解. 一. 活动选择问题 [问题]对几个互相竞争的活动进行调度:活动集合S = {a1, a2, ..., an},它们都要求以独占的方式使用某一公共资源(如教室),每个活动ai有一个开始时间si和结束时间fi ,且0 ≤ si &

五大常用算法之三贪心算法

贪心算法 贪心算法简介: 贪心算法是指:在每一步求解的步骤中,它要求"贪婪"的选择最佳操作,并希望通过一系列的最优选择,能够产生一个问题的(全局的)最优解. 贪心算法每一步必须满足一下条件: 1.可行的:即它必须满足问题的约束. 2.局部最优:他是当前步骤中所有可行选择中最佳的局部选择. 3.不可取消:即选择一旦做出,在算法的后面步骤就不可改变了. 贪心算法案例: 1.活动选择问题  这是<算法导论>上的例子,也是一个非常经典的问题.有n个需要在同一天使用同一个教室的活动a

零基础学贪心算法

本文在写作过程中参考了大量资料,不能一一列举,还请见谅.贪心算法的定义:贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解.贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关.解题的一般步骤是:1.建立数学模型来描述问题:2.把求解的问题分成若干个子问题:3.对每一子问题求解,得到子问题的局部最优解:4.把子问题的局部最优