.NET下日志系统的搭建——log4net+kafka+elk

原文:.NET下日志系统的搭建——log4net+kafka+elk

.NET下日志系统的搭建——log4net+kafka+elk#

前言#

我们公司的程序日志之前都是采用log4net记录文件日志的方式(有关log4net的简单使用可以看我另一篇博客),但是随着后来我们团队越来越大,项目也越来越大,我们的用户量也越来越多。慢慢系统就暴露了很多问题,这个时候我们的日志系统已经不能满足我们的要求。其主要有下面几个问题:

  • 随着我们访问量的增加,我们的日志文件急剧增加
  • 多且乱的文件日志,难以让我们对程序进行排错
  • 文件日志的记录耗用我们应用服务器的资源,导致我们的应用服务器的处理用户请求的能力下降
  • 我们的日志分布在多台应用服务器上,当程序遇到问题时,我们的程序员都需要找运维人员要日志,随着团队越来越大,问题越来越多,于是导致了程序员们排队找运维要日志,解决问题的速度急剧下降!

起初,用户量不大的时候,上面的问题还能容忍。但任何一种小问题都会在用户量访问量变大的时候急剧的放大。终于在几波推广活动的时候,很悲剧的我们又不得不每天深夜加班来为我们之前对这些问题的不重视来买单。于是,在推广活动结束之后,在我们的程序员得到一丝喘息的机会时,我决定来搭建一个我们自己的日志系统,改善我们的日志记录方式。根据以上问题分析我们的日志系统需要有以下几点要求:

  • 日志的写入效率要高不能对应用服务器造成太大的影响
  • 要将日志集中在一台服务器上(或一组)
  • 提供一个方便检索分析的可视化页面(这个最重要,再也受不了每天找运维要日志,拿到一堆文件来分析的日子了!)

一开始想要借助log4net AdoAppender把我们的日志写到数据库里,然后我们开发一个相应的功能,来对我们的日志来进行查询和分析。但考虑到写入关系数据库的性能问题,就放弃了,但有一个替代方案,就是写入到Mongo中,这样就解决了提高了一定的性能。但也需要我们开发一个功能来查询分析。这个时候从网上找了许多方案:

Copy

//方案1:这是我们现有的方案,优点:简单 缺点:效率低,不易查询分析,难以排错...
service-->log4net-->文件
//方案2:优点:简单、效率高、有一定的查询分析功能 缺点:增加mongodb,增加一定复杂性,查询分析功能弱,需要投入开发精力和时间
service-->log4net-->Mongo-->开发一个功能查询分析
//方案3:优点:性能很高,查询分析及其方便,不需要开发投入 缺点:提高了系统复杂度,需要进行大量的测试以保证其稳定性,运维需要对这些组件进行维护监控...
service-->log4net-->kafka-->logstash-->elasticsearch-->kibana搜索展示               

//其它方案
service-->log4net-->文件-->filebeat-->logstash-->elstaicsearch-->kibana

service-->log4net-->文件-->filebeat-->elstaicsearch-->kibana

service-->log4net-->文件-->logstash-->elstaicsearch-->kibana

最终和团队交流后决定采用方案2和方案3的结合,我增加了一个log4net for mongo的appender(这个appender,nuget上也有),另外我们的团队开发一个能支持简单查询搜索的功能。我同步来搭建方案3。关于方案2就不多介绍了,很简单。主要提一提方案3。

一. ELKB简介#

  • Elastic Search: 从名称可以看出,Elastic Search 是用来进行搜索的,提供数据以及相应的配置信息(什么字段是什么数据类型,哪些字段可以检索等),然后你就可以自由地使用API搜索你的数据。
  • Logstash:。日志文件基本上都是每行一条,每一条里面有各种信息,这个软件的功能是将每条日志解析为各个字段。
  • Kibana:提供一套Web界面用来和 Elastic Search 进行交互,这样我们不用使用API来检索数据了,可以直接在 Kibana 中输入关键字,Kibana 会将返回的数据呈现给我们,当然,有很多漂亮的数据可视化图表可供选择。
  • Beats:安装在每台需要收集日志的服务器上,将日志发送给Logstash进行处理,所以Beats是一个“搬运工”,将你的日志搬运到日志收集服务器上。Beats分为很多种,每一种收集特定的信息。常用的是Filebeat,监听文件变化,传送文件内容。一般日志系统使用Filebeat就够了。

二. kafka简介#

2.1 简介#

kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

2.2 适用场景#

  • Messaging
    对于一些常规的消息系统,kafka是个不错的选择;partitons/replication和容错,可以使kafka具有良好的扩展性和性能优势.不过到目前为止,我们应该很清楚认识到,kafka并没有提供JMS中的"事务性""消息传输担保(消息确认机制)""消息分组"等企业级特性;kafka只能使用作为"常规"的消息系统,在一定程度上,尚未确保消息的发送与接收绝对可靠(比如,消息重发,消息发送丢失等)
  • Websit activity tracking
    kafka可以作为"网站活性跟踪"的最佳工具;可以将网页/用户操作等信息发送到kafka中.并实时监控,或者离线统计分析等
  • Log Aggregation
    kafka的特性决定它非常适合作为"日志收集中心";application可以将操作日志"批量""异步"的发送到kafka集群中,而不是保存在本地或者DB中;kafka可以批量提交消息/压缩消息等,这对producer端而言,几乎感觉不到性能的开支.此时consumer端可以使hadoop等其他系统化的存储和分析系统.

三、log4net+ELK+Kafka日志系统#

3.1.简介#

从上我们可以了解到,我们可以增加一个log4net kafkaappender
日志生产者通过这个appender将日志写入kafka,由于kafka批量提交、压缩的特性,因此对我们的应用服务器性能的开支很小。日志消费者端使用logstash订阅kafka中的消息,传送到elasticsearch中,通过kibana展示给我们。同时我们也可以通过kibana对我们的日志进行统计分析等。刚好可以解决我们上面的一些问题。整个流程大致如下图:

关于log4net for kafka appender,我自己写了一个,nuget上也有现成的包,大家需要可以去nuget上找一找。

3.2.搭建#

简单介绍一下搭建,搭建过程中采用Docker。

3.2.1 docker 安装kafka#

Copy

//下载
//下载zookeeper
docker pull wurstmeister/zookeeper

//下载kafka
docker pull wurstmeister/kafka:2.11-0.11.0.3

Copy

//启动
//启动zookeeper
docker run -d --name zookeeper --publish 2181:2181 --volume /etc/localtime:/etc/localtime wurstmeister/zookeeper

//启动kafka
docker run -d --name kafka --publish 9092:9092 --link zookeeper --env KAFKA_ZOOKEEPER_CONNECT=192.168.121.205:2181 --env KAFKA_ADVERTISED_HOST_NAME=192.168.121.205 --env KAFKA_ADVERTISED_PORT=9092  --volume /etc/localtime:/etc/localtime wurstmeister/kafka:2.11-0.11.0.3

Copy

//测试
//创建topic
bin/kafka-topics.sh --create --zookeeper 192.168.121.205:2181 --replication-factor 1 --partitions 1 --topic mykafka

//查看topic
bin/kafka-topics.sh --list --zookeeper 192.168.121.205:2181

//创建生产者
bin/kafka-console-producer.sh --broker-list 192.168.121.205:9092 --topic mykafka 

//创建消费者
bin/kafka-console-consumer.sh --zookeeper 192.168.121.205:2181 --topic mykafka --from-beginning

3.2.2 Docker安装ELK#

Copy

//1.下载elk
docker pull sebp/elk

Copy

//2.启动elk
//Elasticsearch至少需要单独2G的内存
//增加了一个volume绑定,以免重启container以后ES的数据丢失
docker run -d -p 5044:5044 -p 127.0.0.1:5601:5601 -p 127.0.0.1:9200:9200 -p 127.0.0.1:9300:9300 -v /var/data/elk:/var/lib/elasticsearch --name=elk sebp/elk

Copy

//若启动过程出错一般是因为elasticsearch用户拥有的内存权限太小,至少需要262144
切换到root用户

执行命令:

sysctl -w vm.max_map_count=262144

查看结果:

sysctl -a|grep vm.max_map_count

显示:

vm.max_map_count = 262144

Copy

上述方法修改之后,如果重启虚拟机将失效,所以:

解决办法:

在   /etc/sysctl.conf文件最后添加一行

vm.max_map_count=262144

即可永久修改

启动成功之后访问:http://:5601 看到kibana页面则说明安装成功

配置使用

Copy

//进入容器
docker exec -it <container-name> /bin/bash

Copy

//执行命令
/opt/logstash/bin/logstash -e ‘input { stdin { } } output { elasticsearch { hosts => ["localhost"] } }‘
/*
 注意:如果看到这样的报错信息 Logstash could not be started because there is already another instance using the configured data directory.  If you wish to run multiple instances, you must change the "path.data" setting. 请执行命令:service logstash stop 然后在执行就可以了。
*/

测试

当命令成功被执行后,看到:Successfully started Logstash API endpoint {:port=>9600} 信息后,输入:this is a dummy entry 然后回车,模拟一条日志进行测试。
打开浏览器,输入:http://:9200/_search?pretty 如图,就会看到我们刚刚输入的日志内容。

3.2.3 logstash-kafka配置实例#

这是我测试用的一个配置文件。

Copy

input {
        kafka{
                //此处注意:logstash5.x版本以前kafka插件配置的是zookeeper地址,5.x以后配置的是kafka实例地址
                bootstrap_servers =>["192.168.121.205:9092"]
                client_id => "test" group_id => "test"
                consumer_threads => 5
                decorate_events => true
                topics => "logstash"
        }
}
filter{
        json{
                source => "message"
        }
}

output {
        elasticsearch {
                hosts => ["192.168.121.205"]
                index=> "hslog_2"
                codec => "json"
        }
}

配置文件启动logstash方式

Copy

/opt/logstash/bin/logstash -f "配置文件地址"

结束语#

如上,我们的日志系统基本搭建完毕,当然还有很多关于kafka,logstash,elstaicsearch,kibana的使用,以及我们使用的一些问题,大家自己尝试着搭建一下。当然,没有最好的方案,建议大家结合自己公司和系统的现实情况,寻找和选择解决方案。能用简单的方案解决问题,就不要使用复杂的方案。因为复杂的方案在解决问题的同时,也会给我们带来其他的问题。就像我们这个方案,虽然解决了我们当时的问题,但是也增加了我们系统的复杂度,例如:这其中的每一个组件出了问题,都将导致我们的日志系统不可用......,此外,工欲善其事必先利其器,我们虽然解决了器的问题,但是要想"善我们的事"还有很长的路要走,因为究其根本,日志记不记录,在什么地方记录,记录什么等级的日志,还是由我们选择去记录。日志记录无规范、乱记、瞎记,如何规范日志的记录才是是我们接下来要解决的大问题!欢迎大家留言,探讨这些问题!

原文地址:https://www.cnblogs.com/lonelyxmas/p/11235683.html

时间: 2024-11-07 22:20:07

.NET下日志系统的搭建——log4net+kafka+elk的相关文章

.NET 日志系统的搭建:log4net+kafka+elk

前言 公司的程序日志之前都是采用log4net记录文件日志的方式,但是随着后来我们团队越来越大,项目也越来越大,我们的用户量也越来越多. 慢慢系统就暴露了很多问题,这个时候我们的日志系统已经不能满足我们的要求. 其主要有下面几个问题: 随着我们访问量的增加,我们的日志文件急剧增加 多且乱的文件日志,难以让我们对程序进行排错 文件日志的记录耗用我们应用服务器的资源,导致我们的应用服务器的处理用户请求的能力下降 我们的日志分布在多台应用服务器上,当程序遇到问题时,我们的程序员都需要找运维人员要日志,

Linux下日志系统详解

Linux下日志系统详 1.linux系统上有两个日志服务syslog和syslog-ng syslog服务有两个进程syslogd和klogd syslogd: 系统产生的日志信息 klogd:内核产生的日志信息 klogd:在系统启动时内核产生日志输出至物理终端(/dev/console)并存放至/var/log/dmesg文件中 查看klogd产生的日志信息可通过 dmesg 和 cat /var/log/dmesg 命令查看 syslogd:在系统启动后,由各子系统产生日志并存放至 /v

Linux下日志系统的设计

简介:通过日志系统的设计,将多台主机上的日志统一发送到一台服                                器,日志服务器自动将日志记录到mysql数据库,远程通过web方式调用数据库查看日志(使用loganalyzer解决方案,基于php). 在linux系统下,使用apache做web客户端,mysql数据库,php为web及后台数据的调用,统称为lamp. 日志的种类:/var/log/secure 身份验证有关信息的日志 /var/log/maillog 邮件相关的日志

Windows搭建Log4Net+FileBeat+ELK日志分析系统过程以及问题总结

安装流程: 稍后补充 参考内容:http://udn.yyuap.com/thread-54591-1-1.html ; https://www.cnblogs.com/yanbinliu/p/6208626.html 在搭建测试过程中遇到以下问题:1.FileBeat日志报 "dial tcp 127.0.0.1:5044: connectex: No connection could be made because the target machine actively refused it

ELK日志系统的搭建

http://www.cnblogs.com/ibook360/archive/2013/03/15/2961428.html

日志系统的搭建

基于Kafka+ELK搭建海量日志平台

早在传统的单体应用时代,查看日志大都通过SSH客户端登服务器去看,使用较多的命令就是 less 或者 tail.如果服务部署了好几台,就要分别登录到这几台机器上看,等到了分布式和微服务架构流行时代,一个从APP或H5发起的请求除了需要登陆服务器去排查日志,往往还会经过MQ和RPC调用远程到了别的主机继续处理,开发人员定位问题可能还需要根据TraceID或者业务唯一主键去跟踪服务的链路日志,基于传统SSH方式登陆主机查看日志的方式就像图中排查线路的工人一样困难,线上服务器几十上百之多,出了问题难以

十分钟搭建和使用ELK日志分析系统

前言 为满足研发可视化查看测试环境日志的目的,准备采用EK+filebeat实现日志可视化(ElasticSearch+Kibana+Filebeat).题目为"十分钟搭建和使用ELK日志分析系统"听起来有点唬人,其实如果单纯满足可视化要求,并且各软件都已经下载到本地,十分钟是可以搭建一个ELK系统的.本文介绍如何快速安装.配置.使用EK+FILEBEAT去实现日志搜集.本文中没有使用LOGSTASH做日志搜集过滤,但为了后期需要先进行了安装. 工作原理 ElasticSearch:是

分布式框架-日志系统思路及实现

转自:https://www.jianshu.com/p/ce30c31111ca 背景 随着互联网时代数据规模的爆发式增长,传统的单机系统在性能和可用性上已经无法胜任,分布式应用和服务化应用开始走进大家的视野,但是分布式的部署也会带来另外的问题,日志分散在各个应用服务节点中,出现问题不方便及时排查,尤其是服务化的应用中,分析问题时可能需要查看多个日志文件才能定位问题,如果相关项目不是一个团队维护时沟通成本更是直线上升,怎么将日志文件归集,怎么将日志文件呈现成了很多公司需要面对的问题,因此日志系