R语言如何在生存分析与Cox回归中计算IDI,NRI指标

原文链接:http://tecdat.cn/?p=6095

读取样本数据

D=subset(pbc, select=c("time","status","age","albumin","edema","protime","bili"))
D$status=as.numeric(D$status==2)
D=D[!is.na(apply(D,1,mean)),] ; dim(D)

## [1] 416   7

查询部分数据(结果和预测因子)

head(D)

##   time status      age albumin edema protime bili
## 1  400      1 58.76523    2.60   1.0    12.2 14.5
## 2 4500      0 56.44627    4.14   0.0    10.6  1.1
## 3 1012      1 70.07255    3.48   0.5    12.0  1.4
## 4 1925      1 54.74059    2.54   0.5    10.3  1.8
## 5 1504      0 38.10541    3.53   0.0    10.9  3.4
## 6 2503      1 66.25873    3.98   0.0    11.0  0.8

模型0和模型1的结果数据和预测变量集

outcome=D[,c(1,2)]
covs1<-as.matrix(D[,c(-1,-2)])
covs0<-as.matrix(D[,c(-1,-2, -7)])

head(outcome)

##   time status
## 1  400      1
## 2 4500      0
## 3 1012      1
## 4 1925      1
## 5 1504      0
## 6 2503      1
head(covs0)

##        age albumin edema protime
## 1 58.76523    2.60   1.0    12.2
## 2 56.44627    4.14   0.0    10.6
## 3 70.07255    3.48   0.5    12.0
## 4 54.74059    2.54   0.5    10.3
## 5 38.10541    3.53   0.0    10.9
## 6 66.25873    3.98   0.0    11.0
head(covs1)

##        age albumin edema protime bili
## 1 58.76523    2.60   1.0    12.2 14.5
## 2 56.44627    4.14   0.0    10.6  1.1
## 3 70.07255    3.48   0.5    12.0  1.4
## 4 54.74059    2.54   0.5    10.3  1.8
## 5 38.10541    3.53   0.0    10.9  3.4
## 6 66.25873    3.98   0.0    11.0  0.8

推理

<span style="color:#333333"><span style="color:#333333"><code><span style="color:#000000">t0</span><span style="color:#687687">=</span><span style="color:#009999">365</span><span style="color:#687687">*</span><span style="color:#009999">5</span>
<span style="color:#000000">x</span><span style="color:#687687"><-</span><span style="color:#000000">IDI </span><span style="color:#687687">(</span><span style="color:#000000">outcome</span>, <span style="color:#000000">covs0</span>, <span style="color:#000000">covs1</span>, <span style="color:#000000">t0</span>, <span style="color:#000000">npert</span><span style="color:#687687">=</span><span style="color:#009999">200</span><span style="color:#687687">)</span> ;</code></span></span>

输出

##     Est. Lower Upper p-value
## M1 0.090 0.052 0.119       0
## M2 0.457 0.340 0.566       0
## M3 0.041 0.025 0.062       0

M1表示IDI

M2表示NRI

M3表示中位数差异

图形演示

?

有问题欢迎联系我们!

大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务

统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服

?QQ:3025393450

?

【服务场景】  

科研项目; 公司项目外包;线上线下一对一培训;数据爬虫采集;学术研究;报告撰写;市场调查。

【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询

欢迎选修我们的R语言数据分析挖掘必知必会课程!

原文地址:https://www.cnblogs.com/tecdat/p/11395462.html

时间: 2024-11-05 14:38:25

R语言如何在生存分析与Cox回归中计算IDI,NRI指标的相关文章

R语言:社会网络关系分析-进阶

本文内容参考李明<R语言与网站分析>一书 下面使用R语言实现社会网络分析的各个基础概念 # (1) 点集合(Vertexs)和点的属性数据 # 使用V(g)可返回关系网络g中所有点的集合V,并通过length函数直接返回点数目n.代码如下: V(g.undir) ## Vertex sequence: ## [1] 1 2 3 4 5 6 7 length(V(g.undir)) ## [1] 7 # 在g.undir中记录了点名称属性数据V(g.undir)$label,这里也可以直接展示.

R语言笔记4--图形分析

  1.对x1进行直方图分析,绘制直方图hist()       2.探索各科成绩的关联关系,散点图绘制函数plot()            3.列联表分析,列联函数table(),柱状图绘制函数barplot() 4.饼图,饼图绘制函数pie()     5.箱尾图 箱子的上下横线为样本的25%和75%分位数 箱子中间的横线为样本的中位数 上下延伸的直线为尾线,尾线的尽头为最高值和最低值 异常值            6.箱线图      7.相图 每个观测单位的数值表示为一个图形 每个图的

R语言使用Rasch模型分析学生答题能力

原文链接:http://tecdat.cn/?p=10175 几个月以来,我一直对序数回归与项目响应理论(IRT)之间的关系感兴趣. 在这篇文章中,我重点介绍Rasch分析. 最近,我花了点时间尝试理解不同的估算方法.三种最常见的估算方法是: 联合最大似然(JML) 条件逻辑回归,在文献中称为条件最大似然(CML). 标准多级模型,在测量文献中称为边际最大似然(MML). 阅读后,我决定尝试进行Rasch分析,产生多个Rasch输出. 示范 进行此演示之后,可能需要ggplot2和dplyr的知

R语言&amp;页游渠道分析(转)

对着满屏的游戏后台数据,需要快速了解数据特征,一种茫然无从下手的感觉? 本文在游戏后台数据中,如何通过R语言快速的了解游戏后台的数据特征,以及统计各个数据之间的相关系数,并通过相关图来发现其中相关系数较高的数据,从而通过R得到高相关系数之间的线性回归方程,最后通过矩阵散点图来初步发现数据中的一些规律解决相应的问题.附:本文需要安装corrgram和car包 具体代码如下: library(corrgram) library(car) summary(data9) cor(data9) scatt

R语言使用Metropolis- Hasting抽样算法进行逻辑回归

在逻辑回归中,我们将二元响应\(Y_i \)回归到协变量\(X_i \)上. 下面的代码使用Metropolis采样来探索\(\ beta_1 \)和\(\ beta_2 \)的后验. YiYi到协变量XiXi.让 定义expit和logit链接函数 logit<-function(x){log(x/(1-x))} 此函数计算\((\ beta_1,\ beta_2)\)的联合后验.它返回后验的对数以获得数值稳定性.(β1,β2)(β1,β2).它返回后验的对数以获得数值稳定性. log_pos

R语言:利用相关性分析对复杂数据进行数据探索

cor(1:5,1:5) ## [1] 1 cor(1:5,5:1) ## [1] -1 cor(1:5,c(1,2,3,4,4)) ## [1] 0.9701 cor(1:5,c(1,2,3,1,4)) ## [1] 0.6063 library(RCurl) ## Loading required package: bitops urlfile<-"http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.

r语言学习笔记:分析学生的考试成绩

测试数学为某一年级所有班的所有科目的考试成绩表,为了不泄漏孩子的姓名,就用学号代替了.谁感觉兴趣,可以下载测试数据. num class chn math eng phy chem politics bio history geo pe0158 3 99 120 114 70 49.5 50 49 48.5 49.5 600442 7 107 120 118.5 68.6 43 49 48.5 48.5 49 560249 4 98 120 116 70 47.5 47 49 47.5 49 6

R语言︱情感分析—词典型代码实践(最基础)(一)

笔者寄语:词典型情感分析对词典要求极高,词典中的词语需要人工去选择,但是这样的选择会很有目标以及针对性.本文代码大多来源于<数据挖掘之道>的情感分析章节.本书中还提到了监督算法式的情感分析,可见博客: R语言︱情感分析-基于监督算法R语言实现笔记. 可以与博客 R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等)对着看. 词典型情感分析大致有以下几个步骤: 训练数据集.neg/pos情感词典.分词+数据清洗清洗(一.二.三级清洗步骤).计算情感得分.模型评价 ----------

R语言︱监督算法式的情感分析笔记

笔者寄语:本文大多内容来自未出版的<数据挖掘之道>的情感分析章节.本书中总结情感分析算法主要分为两种:词典型+监督算法型. 监督算法型主要分别以下几个步骤: 构建训练+测试集+特征提取(TFIDF指标)+算法模型+K层交叉验证.可与博客对着看:R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等) ------------------------------------------------ 一.TFIDF算法指标的简介 监督式算法需要把非结构化的文本信息转化为结构化的一些指标,