mysql分表与分区表
转自:http://blog.51yip.com/mysql/949.html
一,什么是mysql分表,分区
什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看mysql分表的3种方法
什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上
一,先说一下为什么要分表
当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
根据个人经验,mysql执行一个sql的过程如下:
- 接收到sql;
- 把sql放到排队队列中 ;
- 执行sql;
- 返回执行结果。
在这个执行过程中最花时间在什么地方呢?
-
- 第一,是排队等待的时间,
- 第二,sql的执行时间。其实这二个是一回事,等待的同时,肯定有sql在执行。所以我们要缩短sql的执行时间。
mysql中有一种机制是表锁定和行锁定,为什么要出现这种机制,是为了保证数据的完整性,我举个例子来说吧,如果有二个sql都要修改同一张表的同一条数据,这个时候怎么办呢,是不是二个sql都可以同时修改这条数据呢?很显然mysql对这种情况的处理是,一种是表锁定(myisam存储引擎),一个是行锁定(innodb存储引擎)。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。如果数据太多,一次执行的时间太长,等待的时间就越长,这也是我们为什么要分表的原因。
二,分表
1,做mysql集群,例如:利用mysql cluster ,mysql proxy,mysql replication,drdb等等
有人会问mysql集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少sql排队队列中的sql的数量,举个例子:有10个sql请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这10个sql请求,分配到5个数据库服务器的排队队列中,一个数据库服务器的队列中只有2个,这样等待时间是不是大大的缩短了呢?这已经很明显了。所以我把它列到了分表的范围以内,我做过一些mysql的集群:
linux mysql proxy 的安装,配置,以及读写分离
mysql replication 互为主从的安装及配置,以及数据同步
优点:扩展性好,没有多个分表后的复杂操作(php代码)
缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。
2,预先估计会出现大数据量并且访问频繁的表,将其分为若干个表
这种预估大差不差的,论坛里面发表帖子的表,时间长了这张表肯定很大,几十万,几百万都有可能。 聊天室里面信息表,几十个人在一起一聊一个晚上,时间长了,这张表的数据肯定很大。像这样的情况很多。所以这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。以聊天信息表为例:
我事先建100个这样的表,message_00,message_01,message_02..........message_98,message_99.然后根据用户的ID来判断这个用户的聊天信息放到哪张表里面,你可以用hash的方式来获得,可以用求余的方式来获得,方法很多,各人想各人的吧。下面用hash的方法来获得表名:
<?php function get_hash_table($table,$userid) { $str = crc32($userid); if($str<0){ $hash = "0".substr(abs($str), 0, 1); }else{ $hash = substr($str, 0, 2); } return $table."_".$hash; } echo get_hash_table(‘message‘,‘user18991‘); //结果为message_10 echo get_hash_table(‘message‘,‘user34523‘); //结果为message_13 ?>说明一下,上面的这个方法,告诉我们user18991这个用户的消息都记录在message_10这张表里,user34523这个用户的消息都记录在message_13这张表里,读取的时候,只要从各自的表中读取就行了。
优点:避免一张表出现几百万条数据,缩短了一条sql的执行时间
缺点:当一种规则确定时,打破这条规则会很麻烦,上面的例子中我用的hash算法是crc32,如果我现在不想用这个算法了,改用md5后,会使同一个用户的消息被存储到不同的表中,这样数据乱套了。扩展性很差。
3,利用merge存储引擎来实现分表
我觉得这种方法比较适合,那些没有事先考虑,而已经出现了得,数据查询慢的情况。这个时候如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了,现在一张表要分成几十张表,甚至上百张表,这样sql语句是不是要重写呢?举个例子,我很喜欢举子
mysql>show engines;的时候你会发现mrg_myisam其实就是merge。
mysql> CREATE TABLE IF NOT EXISTS `user1` ( -> `id` int(11) NOT NULL AUTO_INCREMENT, -> `name` varchar(50) DEFAULT NULL, -> `sex` int(1) NOT NULL DEFAULT ‘0‘, -> PRIMARY KEY (`id`) -> ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ; Query OK, 0 rows affected (0.05 sec) mysql> CREATE TABLE IF NOT EXISTS `user2` ( -> `id` int(11) NOT NULL AUTO_INCREMENT, -> `name` varchar(50) DEFAULT NULL, -> `sex` int(1) NOT NULL DEFAULT ‘0‘, -> PRIMARY KEY (`id`) -> ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ; Query OK, 0 rows affected (0.01 sec) mysql> INSERT INTO `user1` (`name`, `sex`) VALUES(‘张映‘, 0); Query OK, 1 row affected (0.00 sec) mysql> INSERT INTO `user2` (`name`, `sex`) VALUES(‘tank‘, 1); Query OK, 1 row affected (0.00 sec) mysql> CREATE TABLE IF NOT EXISTS `alluser` ( -> `id` int(11) NOT NULL AUTO_INCREMENT, -> `name` varchar(50) DEFAULT NULL, -> `sex` int(1) NOT NULL DEFAULT ‘0‘, -> INDEX(id) -> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ; Query OK, 0 rows affected, 1 warning (0.00 sec) mysql> select id,name,sex from alluser; +----+--------+-----+ | id | name | sex | +----+--------+-----+ | 1 | 张映 | 0 | | 1 | tank | 1 | +----+--------+-----+ 2 rows in set (0.00 sec) mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES(‘tank2‘, 0); Query OK, 1 row affected (0.00 sec) mysql> select id,name,sex from user2 -> ; +----+-------+-----+ | id | name | sex | +----+-------+-----+ | 1 | tank | 1 | | 2 | tank2 | 0 | +----+-------+-----+ 2 rows in set (0.00 sec)从上面的操作中,我不知道你有没有发现点什么?假如我有一张用户表user,有50W条数据,现在要拆成二张表user1和user2,每张表25W条数据,
INSERT INTO user1(user1.id,user1.name,user1.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id <= 250000 INSERT INTO user2(user2.id,user2.name,user2.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id > 250000这样我就成功的将一张user表,分成了二个表,这个时候有一个问题,代码中的sql语句怎么办,以前是一张表,现在变成二张表了,代码改动很大,这样给程序员带来了很大的工作量,有没有好的办法解决这一点呢?办法是把以前的user表备份一下,然后删除掉,上面的操作中我建立了一个alluser表,只把这个alluser表的表名改成user就行了。
但是,不是所有的mysql操作都能用的
- 如果你使用 alter table 来把 merge 表变为其它表类型,到底层表的映射就被丢失了。取而代之的,来自底层 myisam 表的行被复制到已更换的表中,该表随后被指定新类型。
- 网上看到一些说replace不起作用,我试了一下可以起作用的。晕一个先
mysql> UPDATE alluser SET sex=REPLACE(sex, 0, 1) where id=2; Query OK, 1 row affected (0.00 sec) Rows matched: 1 Changed: 1 Warnings: 0 mysql> select * from alluser; +----+--------+-----+ | id | name | sex | +----+--------+-----+ | 1 | 张映 | 0 | | 1 | tank | 1 | | 2 | tank2 | 1 | +----+--------+-----+ 3 rows in set (0.00 sec)
- 一个 merge 表不能在整个表上维持 unique 约束。当你执行一个 insert,数据进入第一个或者最后一个 myisam 表(取决于 insert_method 选项的值)。mysql 确保唯一键值在那个 myisam 表里保持唯一,但不是跨集合里所有的表。
- 当你创建一个 merge 表之时,没有检查去确保底层表的存在以及有相同的机构。当 merge 表被使用之时,mysql 检查每个被映射的表的记录长度是否相等,但这并不十分可靠。如果你从不相似的 myisam 表创建一个 merge 表,你非常有可能撞见奇怪的问题。
优点:扩展性好,并且程序代码改动的不是很大
缺点:这种方法的效果比第二种要差一点
三,总结一下
上面提到的三种方法,我实际做过二种,第一种和第二种。第三种没有做过,所以说的细一点。哈哈。做什么事都有一个度,超过个度就过变得很差,不能一味的做数据库服务器集群,硬件是要花钱买的,也不要一味的分表,分出来1000表,mysql的存储归根到底还以文件的形势存在硬盘上面,一张表对应三个文件,1000个分表就是对应3000个文件,这样检索起来也会变的很慢。我的建议是
方法1和方法2结合的方式来进行分表
方法1和方法3结合的方式来进行分表
我的二个建议适合不同的情况,根据个人情况而定,我觉得会有很多人选择方法1和方法3结合的方式
二,mysql分表和分区有什么区别呢
1,实现方式上
- mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完正的一张表,都对应三个文件,一个.MYD数据文件,.MYI索引文件,.frm表结构文件。
[[email protected] test]# ls |grep user alluser.MRG alluser.frm user1.MYD user1.MYI user1.frm user2.MYD user2.MYI user2.frm
[[email protected] test]# ls |grep user alluser.MRG alluser.frm user1.MYD user1.MYI user1.frm user2.MYD user2.MYI user2.frm
简单说明一下,上面的分表呢是利用了merge存储引擎(分表的一种),alluser是总表,下面有二个分表,user1,user2。他们二个都是独立的表,取数据的时候,我们可以通过总表来取。这里总表是没有.MYD,.MYI这二个文件的,也就是说,总表他不是一张表,没有数据,数据都放在分表里面。我们来看看.MRG到底是什么东西
[[email protected] test]# cat alluser.MRG |more user1 user2 #INSERT_METHOD=LAST
[[email protected] test]# cat alluser.MRG |more user1 user2 #INSERT_METHOD=LAST
从上面我们可以看出,alluser.MRG里面就存了一些分表的关系,以及插入数据的方式。可以把总表理解成一个外壳,或者是联接池。
- 分区不一样,一张大表进行分区后,他还是一张表,不会变成二张表,但是他存放数据的区块变多了。
[[email protected] test]# ls |grep aa aa#P#p1.MYD aa#P#p1.MYI aa#P#p3.MYD aa#P#p3.MYI aa.frm aa.par
[[email protected] test]# ls |grep aa aa#P#p1.MYD aa#P#p1.MYI aa#P#p3.MYD aa#P#p3.MYI aa.frm aa.par
从上面我们可以看出,aa这张表,分为二个区,p1和p3,本来是三个区,被我删了一个区。我们都知道一张表对应三个文件.MYD,.MYI,.frm。分区呢根据一定的规则把数据文件和索引文件进行了分割,还多出了一个.par文件,打开.par文件后你可以看出他记录了,这张表的分区信息,根分表中的.MRG有点像。分区后,还是一张,而不是多张表。
2,数据处理上
- 分表后,数据都是存放在分表里,总表只是一个外壳,存取数据发生在一个一个的分表里面。看下面的例子:select * from alluser where id=’12′表面上看,是对表alluser进行操作的,其实不是的。是对alluser里面的分表进行了操作。
- 分区呢,不存在分表的概念,分区只不过把存放数据的文件分成了许多小块,分区后的表呢,还是一张表。数据处理还是由自己来完成。
3,提高性能上
- 分表后,单表的并发能力提高了,磁盘I/O性能也提高了。并发能力为什么提高了呢,因为查寻一次所花的时间变短了,如果出现高并发的话,总表可以根据不同的查询,将并发压力分到不同的小表里面。磁盘I/O性能怎么搞高了呢,本来一个非常大的.MYD文件现在也分摊到各个小表的.MYD中去了。
- mysql提出了分区的概念,我觉得就想突破磁盘I/O瓶颈,想提高磁盘的读写能力,来增加mysql性能。
- 在这一点上,分区和分表的测重点不同,分表重点是存取数据时,如何提高mysql并发能力上;而分区呢,如何突破磁盘的读写能力,从而达到提高mysql性能的目的。
4),实现的难易度上
- 分表的方法有很多,用merge来分表,是最简单的一种方式。这种方式根分区难易度差不多,并且对程序代码来说可以做到透明的。如果是用其他分表方式就比分区麻烦了。
- 分区实现是比较简单的,建立分区表,根建平常的表没什么区别,并且对开代码端来说是透明的。
三,mysql分表和分区有什么联系呢
-
都能提高mysql的性高,在高并发状态下都有一个良好的表面。
-
分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式(如果merge这种分表方式,不能和分区配合的话,可以用其他的分表试),访问量不大,但是表数据很多的表,我们可以采取分区的方式等