mysql分表与分区表

mysql分表与分区表

转自:http://blog.51yip.com/mysql/949.html

 

一,什么是mysql分表,分区

  什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看mysql分表的3种方法

  什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上

一,先说一下为什么要分表

  当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。

根据个人经验,mysql执行一个sql的过程如下:

  1. 接收到sql;
  2. 把sql放到排队队列中 ;
  3. 执行sql;
  4. 返回执行结果。

  在这个执行过程中最花时间在什么地方呢?

    1. 第一,是排队等待的时间,
    2. 第二,sql的执行时间。其实这二个是一回事,等待的同时,肯定有sql在执行。所以我们要缩短sql的执行时间。

  mysql中有一种机制是表锁定和行锁定,为什么要出现这种机制,是为了保证数据的完整性,我举个例子来说吧,如果有二个sql都要修改同一张表的同一条数据,这个时候怎么办呢,是不是二个sql都可以同时修改这条数据呢?很显然mysql对这种情况的处理是,一种是表锁定(myisam存储引擎),一个是行锁定(innodb存储引擎)。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。如果数据太多,一次执行的时间太长,等待的时间就越长,这也是我们为什么要分表的原因。

二,分表

  1,做mysql集群,例如:利用mysql cluster ,mysql proxy,mysql replication,drdb等等

  有人会问mysql集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少sql排队队列中的sql的数量,举个例子:有10个sql请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这10个sql请求,分配到5个数据库服务器的排队队列中,一个数据库服务器的队列中只有2个,这样等待时间是不是大大的缩短了呢?这已经很明显了。所以我把它列到了分表的范围以内,我做过一些mysql的集群:

linux mysql proxy 的安装,配置,以及读写分离

mysql replication 互为主从的安装及配置,以及数据同步

优点:扩展性好,没有多个分表后的复杂操作(php代码)

缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。

  2,预先估计会出现大数据量并且访问频繁的表,将其分为若干个表

  这种预估大差不差的,论坛里面发表帖子的表,时间长了这张表肯定很大,几十万,几百万都有可能。 聊天室里面信息表,几十个人在一起一聊一个晚上,时间长了,这张表的数据肯定很大。像这样的情况很多。所以这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。以聊天信息表为例:

  我事先建100个这样的表,message_00,message_01,message_02..........message_98,message_99.然后根据用户的ID来判断这个用户的聊天信息放到哪张表里面,你可以用hash的方式来获得,可以用求余的方式来获得,方法很多,各人想各人的吧。下面用hash的方法来获得表名:

<?php
function get_hash_table($table,$userid) {
 $str = crc32($userid);
 if($str<0){
 $hash = "0".substr(abs($str), 0, 1);
 }else{
 $hash = substr($str, 0, 2);
 }  

 return $table."_".$hash;
}  

echo get_hash_table(‘message‘,‘user18991‘);     //结果为message_10
echo get_hash_table(‘message‘,‘user34523‘);    //结果为message_13
?>  

  说明一下,上面的这个方法,告诉我们user18991这个用户的消息都记录在message_10这张表里,user34523这个用户的消息都记录在message_13这张表里,读取的时候,只要从各自的表中读取就行了。

优点:避免一张表出现几百万条数据,缩短了一条sql的执行时间

缺点:当一种规则确定时,打破这条规则会很麻烦,上面的例子中我用的hash算法是crc32,如果我现在不想用这个算法了,改用md5后,会使同一个用户的消息被存储到不同的表中,这样数据乱套了。扩展性很差。

3,利用merge存储引擎来实现分表

  我觉得这种方法比较适合,那些没有事先考虑,而已经出现了得,数据查询慢的情况。这个时候如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了,现在一张表要分成几十张表,甚至上百张表,这样sql语句是不是要重写呢?举个例子,我很喜欢举子

mysql>show engines;的时候你会发现mrg_myisam其实就是merge。

mysql> CREATE TABLE IF NOT EXISTS `user1` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT ‘0‘,
 ->   PRIMARY KEY (`id`)
 -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;
Query OK, 0 rows affected (0.05 sec)  

mysql> CREATE TABLE IF NOT EXISTS `user2` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT ‘0‘,
 ->   PRIMARY KEY (`id`)
 -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;
Query OK, 0 rows affected (0.01 sec)  

mysql> INSERT INTO `user1` (`name`, `sex`) VALUES(‘张映‘, 0);
Query OK, 1 row affected (0.00 sec)  

mysql> INSERT INTO `user2` (`name`, `sex`) VALUES(‘tank‘, 1);
Query OK, 1 row affected (0.00 sec)  

mysql> CREATE TABLE IF NOT EXISTS `alluser` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT ‘0‘,
 ->   INDEX(id)
 -> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ;
Query OK, 0 rows affected, 1 warning (0.00 sec)  

mysql> select id,name,sex from alluser;
+----+--------+-----+
| id | name   | sex |
+----+--------+-----+
|  1 | 张映 |   0 |
|  1 | tank   |   1 |
+----+--------+-----+
2 rows in set (0.00 sec)  

mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES(‘tank2‘, 0);
Query OK, 1 row affected (0.00 sec)  

mysql> select id,name,sex from user2
 -> ;
+----+-------+-----+
| id | name  | sex |
+----+-------+-----+
|  1 | tank  |   1 |
|  2 | tank2 |   0 |
+----+-------+-----+
2 rows in set (0.00 sec)  

  从上面的操作中,我不知道你有没有发现点什么?假如我有一张用户表user,有50W条数据,现在要拆成二张表user1和user2,每张表25W条数据,

INSERT INTO user1(user1.id,user1.name,user1.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id <= 250000

INSERT INTO user2(user2.id,user2.name,user2.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id > 250000

  这样我就成功的将一张user表,分成了二个表,这个时候有一个问题,代码中的sql语句怎么办,以前是一张表,现在变成二张表了,代码改动很大,这样给程序员带来了很大的工作量,有没有好的办法解决这一点呢?办法是把以前的user表备份一下,然后删除掉,上面的操作中我建立了一个alluser表,只把这个alluser表的表名改成user就行了。

但是,不是所有的mysql操作都能用的

  • 如果你使用 alter table 来把 merge 表变为其它表类型,到底层表的映射就被丢失了。取而代之的,来自底层 myisam 表的行被复制到已更换的表中,该表随后被指定新类型。
  • 网上看到一些说replace不起作用,我试了一下可以起作用的。晕一个先
mysql> UPDATE alluser SET sex=REPLACE(sex, 0, 1) where id=2;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0  

mysql> select * from alluser;
+----+--------+-----+
| id | name   | sex |
+----+--------+-----+
|  1 | 张映 |   0 |
|  1 | tank   |   1 |
|  2 | tank2  |   1 |
+----+--------+-----+
3 rows in set (0.00 sec)  
  • 一个 merge 表不能在整个表上维持 unique 约束。当你执行一个 insert,数据进入第一个或者最后一个 myisam 表(取决于 insert_method 选项的值)。mysql 确保唯一键值在那个 myisam 表里保持唯一,但不是跨集合里所有的表。
  • 当你创建一个 merge 表之时,没有检查去确保底层表的存在以及有相同的机构。当 merge 表被使用之时,mysql 检查每个被映射的表的记录长度是否相等,但这并不十分可靠。如果你从不相似的 myisam 表创建一个 merge 表,你非常有可能撞见奇怪的问题。

优点:扩展性好,并且程序代码改动的不是很大

缺点:这种方法的效果比第二种要差一点

三,总结一下

  上面提到的三种方法,我实际做过二种,第一种和第二种。第三种没有做过,所以说的细一点。哈哈。做什么事都有一个度,超过个度就过变得很差,不能一味的做数据库服务器集群,硬件是要花钱买的,也不要一味的分表,分出来1000表,mysql的存储归根到底还以文件的形势存在硬盘上面,一张表对应三个文件,1000个分表就是对应3000个文件,这样检索起来也会变的很慢。我的建议是

方法1和方法2结合的方式来进行分表

方法1和方法3结合的方式来进行分表

我的二个建议适合不同的情况,根据个人情况而定,我觉得会有很多人选择方法1和方法3结合的方式

二,mysql分表和分区有什么区别呢

1,实现方式上

  • mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完正的一张表,都对应三个文件,一个.MYD数据文件,.MYI索引文件,.frm表结构文件。
[[email protected] test]# ls |grep user
alluser.MRG
alluser.frm
user1.MYD
user1.MYI
user1.frm
user2.MYD
user2.MYI
user2.frm  
[[email protected] test]# ls |grep user
alluser.MRG
alluser.frm
user1.MYD
user1.MYI
user1.frm
user2.MYD
user2.MYI
user2.frm  

  简单说明一下,上面的分表呢是利用了merge存储引擎(分表的一种),alluser是总表,下面有二个分表,user1,user2。他们二个都是独立的表,取数据的时候,我们可以通过总表来取。这里总表是没有.MYD,.MYI这二个文件的,也就是说,总表他不是一张表,没有数据,数据都放在分表里面。我们来看看.MRG到底是什么东西

[[email protected] test]# cat alluser.MRG |more
user1
user2
#INSERT_METHOD=LAST  
[[email protected] test]# cat alluser.MRG |more
user1
user2
#INSERT_METHOD=LAST  

从上面我们可以看出,alluser.MRG里面就存了一些分表的关系,以及插入数据的方式。可以把总表理解成一个外壳,或者是联接池。

  • 分区不一样,一张大表进行分区后,他还是一张表,不会变成二张表,但是他存放数据的区块变多了。
[[email protected] test]# ls |grep aa
aa#P#p1.MYD
aa#P#p1.MYI
aa#P#p3.MYD
aa#P#p3.MYI
aa.frm
aa.par  
[[email protected] test]# ls |grep aa
aa#P#p1.MYD
aa#P#p1.MYI
aa#P#p3.MYD
aa#P#p3.MYI
aa.frm
aa.par  

  从上面我们可以看出,aa这张表,分为二个区,p1和p3,本来是三个区,被我删了一个区。我们都知道一张表对应三个文件.MYD,.MYI,.frm。分区呢根据一定的规则把数据文件和索引文件进行了分割,还多出了一个.par文件,打开.par文件后你可以看出他记录了,这张表的分区信息,根分表中的.MRG有点像。分区后,还是一张,而不是多张表。

2,数据处理上

  • 分表后,数据都是存放在分表里,总表只是一个外壳,存取数据发生在一个一个的分表里面。看下面的例子:select * from alluser where id=’12′表面上看,是对表alluser进行操作的,其实不是的。是对alluser里面的分表进行了操作。
  • 分区呢,不存在分表的概念,分区只不过把存放数据的文件分成了许多小块,分区后的表呢,还是一张表。数据处理还是由自己来完成。

3,提高性能上

  • 分表后,单表的并发能力提高了,磁盘I/O性能也提高了。并发能力为什么提高了呢,因为查寻一次所花的时间变短了,如果出现高并发的话,总表可以根据不同的查询,将并发压力分到不同的小表里面。磁盘I/O性能怎么搞高了呢,本来一个非常大的.MYD文件现在也分摊到各个小表的.MYD中去了。
  • mysql提出了分区的概念,我觉得就想突破磁盘I/O瓶颈,想提高磁盘的读写能力,来增加mysql性能。
  • 在这一点上,分区和分表的测重点不同,分表重点是存取数据时,如何提高mysql并发能力上;而分区呢,如何突破磁盘的读写能力,从而达到提高mysql性能的目的。

4),实现的难易度上

  • 分表的方法有很多,用merge来分表,是最简单的一种方式。这种方式根分区难易度差不多,并且对程序代码来说可以做到透明的。如果是用其他分表方式就比分区麻烦了。
  • 分区实现是比较简单的,建立分区表,根建平常的表没什么区别,并且对开代码端来说是透明的。

三,mysql分表和分区有什么联系呢

  1. 都能提高mysql的性高,在高并发状态下都有一个良好的表面。

  2. 分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式(如果merge这种分表方式,不能和分区配合的话,可以用其他的分表试),访问量不大,但是表数据很多的表,我们可以采取分区的方式等

时间: 2024-10-14 06:28:50

mysql分表与分区表的相关文章

Mysql分表和分区的区别、分库分表介绍与区别

分表和分区的区别: 一,什么是mysql分表,分区 什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看:mysql分表的3种方法 什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上,具体请参考mysql分区功能详细介绍,以及实例 二,mysql分表和分区有什么区别呢 1,实现方式上 a),mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完正的一张表,都对应三个文件,一个.MYD数据文件,.MYI索引文件,.frm表

mysql分表方法-----MRG_MyISAM引擎分表法

一般来说,当我们的数据库的数据超过了100w记录的时候就应该考虑分表或者分区了,这次我来详细说说分表的一些方法.目前我所知道的方法都是MYISAM的,INNODB如何做分表并且保留事务和外键,我还不是很了解. 首先,我们需要想好到底分多少个表,前提当然是满足应用.这里我使用了一个比较简单的分表方法,就是根据自增id的尾数来分,也就是说分0-9一共10个表,其取值也很好做,就是对10进行取模.另外,还可以根据某一字段的md5值取其中几位进行分表,这样的话,可以分的表就很多了. 好了,先来创建表吧,

mysql 分表与分区

一.操作环境 数据达到百w甚于更多的时候,我们的mysql查询将会变得比较慢, 如果再加上连表查询,程序可能会卡死.即使你设置了索引并在查询中使用到了索引,查询还是会慢.这时候你就要考虑怎么样来提高查询速度了. 抛弃其他的不讲,只从mysql本身的优化来讲,我所知道的方法有三种:mysql集群,mysql分表,mysql分区 二.mysql集群 mysql集群成本比较高,不过这不是这里讲的重点,后期开一篇文章,专门来讲这方面的知识. 三.mysql分表 1. 当数据达到百w,千w的时候,我们就想

mysql分表和表分区详解

为什么要分表和分区? 日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕.分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率. 什么是分表? 分表是将一个大表按照一定的规则分解成多张具有独立存储空间的实体表,我们可以称为子表,每个表都对应三个文件,MYD数据文件,.MYI索引文件,.frm表结构文件.这些子表可以分布在

MYSQL 分表原理(转)

简介:引用MySQL官方文档中的一段话:MERGE存储引擎,也被认识为MRG_MyISAM引擎,是一个相同的可以被当作一个来用的MyISAM表的集合."相同"意味着所有表同样的列和索引信息.你不能合并列被以不同顺序列于其中的表,没有恰好同样列的表,或有不同顺序索引的表.而且,任何或者所有的表可以用myisampack来压缩.例子:mysql> show engines;+--------------------+---------+------------------------

mysql分表的三种方法

mysql分表的3种方法 一,先说一下为什么要分表 当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间. 根据个人经验,mysql执行一个sql的过程如下:1,接收到sql;2,把sql放到排队队列中 ;3,执行sql;4,返回执行结果.在这个执行过程中最花时间在什么地方呢?第一,是排队等待的时间,第二,sql的执行时间.其实这二个是一回事,等待的同时,肯定有sql在执行.所以我们要缩短sql的执行

mysql分表研究

分表是分散数据库压力的好方法. 分表,最直白的意思,就是将一个表结构分为多个表,然后,可以再同一个库里,也可以放到不同的库. 当然,首先要知道什么情况下,才需要分表.个人觉得 单表记录条数达到百万到千万级别时就要使用分表了. 1,分表的分类 1>纵向分表 将本来可以在同一个表的内容,人为划分为多个表.(所谓的本来,是指按照关系型数据库的第三范式要求,是应该在同一个表的.) 分表理由:根据数据的活跃度进行分离,(因为不同活跃的数据,处理方式是不同的) 案例: 对于一个博客系统,文章标题,作者,分类

使用Merge存储引擎实现MySQL分表

一.使用场景 Merge表有点类似于视图.使用Merge存储引擎实现MySQL分表,这种方法比较适合那些没有事先考虑分表,随着数据的增多,已经出现了数据查询慢的情况. 这个时候如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码.所以使用Merge存储引擎实现MySQL分表可以避免改代码. Merge引擎下每一张表只有一个MRG文件.MRG里面存放着分表的关系,以及插入数据的方式.它就像是一个外壳,或者是连接池,数据存放在分表里面. 对于增删改查,直接操作总表即可. 二.建表 1.用户1表

mysql分表场景分析与简单分表操作

为什么要分表 首先要知道什么情况下,才需要分表个人觉得单表记录条数达到百万到千万级别时就要使用分表了,分表的目的就在于此,减小数据库的负担,缩短查询时间. 表分割有两种方式: 1水平分割:根据一列或多列数据的值把数据行放到两个独立的表中. 水平分割通常在下面的情况下使用: 表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询速度. 表中的数据本来就有独立性,例如表中分别记录各个地区的数据或不同时期的数据,特别是有些数据常用,而另外一些数据不常用. 需要把数据存