.net源码分析 - ConcurrentDictionary<TKey, TValue>

分析: http://www.cnblogs.com/brookshi/p/5583892.html

继上篇Dictionary源码分析,上篇讲过的在这里不会再重复

ConcurrentDictionary源码地址:https://github.com/dotnet/corefx/blob/master/src/System.Collections.Concurrent/src/System/Collections/Concurrent/ConcurrentDictionary.cs

ConcurrentDictionary一大特点是线程安全,在没有ConcurrentDictionary之前在多线程下用 Dictionary,不管读写都要加个锁,不但麻烦,性能上也不是很好,因为在上篇分析中我们知道Dictionary内部是由多个bucket组成, 不同bucket的操作即使在多线程下也可以不互相影响,如果一个锁把整个Dictionary都锁住实在有点浪费。

不过凡事都有两面性,给每个Bucket都加一个锁也不可取,Bucket的数量和Dictionary元素数量是一样的,而Bucket可能会有 一部分是空的,而且访问Dictionary的线程如果数量不是太多也根本用上不这么多锁,想想即使有10个线程在不停的操作这个Dictionary, 同时操作的最多也就10个,即使两两冲突访问同一个Bucket,5个锁就够了,当然这是最好的情况,最坏情况是这5个bucket用同一个锁。所以,要 得到最好的结果需要尝试取一个最优解,而影响因素则是bucket数量和线程数量。我们想要的结果是锁够用但又不浪费。

微软得出的结果是默认的锁的数量是CPU核的个数,这个线程池默认的线程数量一样。随着Dictionary的扩容,锁的个数也可以跟着增加,这个可以在构造函数中自己指定。

下面看看ConcurrentDictionary里元素是做了怎样的封装。

时间: 2024-11-13 12:53:14

.net源码分析 - ConcurrentDictionary<TKey, TValue>的相关文章

.net源码分析 – Dictionary&lt;TKey, TValue&gt;

接上篇:.net源码分析 – List<T> Dictionary<TKey, TValue>源码地址:https://github.com/dotnet/corefx/blob/master/src/System.Collections/src/System/Collections/Generic/Dictionary.cs 接口 Dictionary<TKey, TValue>和List<T>的接口形式差不多,不重复说了,可以参考List<T>

DOTNET CORE源码分析之IOC容器结果获取内容补充

补充一下ServiceProvider的内容 可能上一篇文章DOTNET CORE源码分析之IServiceProvider.ServiceProvider.IServiceProviderEngine.ServiceProviderEngine和ServiceProviderEngineScope 中还没有关联上ServiceProvider和ServiceCollection就直接通过GetService获取了值,这样不科学啊.其实是有关联的,请看一下上篇文章同样存在的一个代码段: inte

TeamTalk源码分析之login_server

login_server是TeamTalk的登录服务器,负责分配一个负载较小的MsgServer给客户端使用,按照新版TeamTalk完整部署教程来配置的话,login_server的服务端口就是8080,客户端登录服务器地址配置如下(这里是win版本客户端): 1.login_server启动流程 login_server的启动是从login_server.cpp中的main函数开始的,login_server.cpp所在工程路径为server\src\login_server.下表是logi

Android触摸屏事件派发机制详解与源码分析二(ViewGroup篇)

1 背景 还记得前一篇<Android触摸屏事件派发机制详解与源码分析一(View篇)>中关于透过源码继续进阶实例验证模块中存在的点击Button却触发了LinearLayout的事件疑惑吗?当时说了,在那一篇咱们只讨论View的触摸事件派发机制,这个疑惑留在了这一篇解释,也就是ViewGroup的事件派发机制. PS:阅读本篇前建议先查看前一篇<Android触摸屏事件派发机制详解与源码分析一(View篇)>,这一篇承接上一篇. 关于View与ViewGroup的区别在前一篇的A

HashMap与TreeMap源码分析

1. 引言     在红黑树--算法导论(15)中学习了红黑树的原理.本来打算自己来试着实现一下,然而在看了JDK(1.8.0)TreeMap的源码后恍然发现原来它就是利用红黑树实现的(很惭愧学了Java这么久,也写过一些小项目,也使用过TreeMap无数次,但到现在才明白它的实现原理).因此本着"不要重复造轮子"的思想,就用这篇博客来记录分析TreeMap源码的过程,也顺便瞅一瞅HashMap. 2. 继承结构 (1) 继承结构 下面是HashMap与TreeMap的继承结构: pu

Linux内核源码分析--内核启动之(5)Image内核启动(rest_init函数)(Linux-3.0 ARMv7)【转】

原文地址:Linux内核源码分析--内核启动之(5)Image内核启动(rest_init函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.chinaunix.net/uid-25909619-id-4938395.html 前面粗略分析start_kernel函数,此函数中基本上是对内存管理和各子系统的数据结构初始化.在内核初始化函数start_kernel执行到最后,就是调用rest_init函数,这个函数的主要使命就是创建并启动内核线

Spark的Master和Worker集群启动的源码分析

基于spark1.3.1的源码进行分析 spark master启动源码分析 1.在start-master.sh调用master的main方法,main方法调用 def main(argStrings: Array[String]) { SignalLogger.register(log) val conf = new SparkConf val args = new MasterArguments(argStrings, conf) val (actorSystem, _, _, _) =

Solr4.8.0源码分析(22)之 SolrCloud的Recovery策略(三)

Solr4.8.0源码分析(22)之 SolrCloud的Recovery策略(三) 本文是SolrCloud的Recovery策略系列的第三篇文章,前面两篇主要介绍了Recovery的总体流程,以及PeerSync策略.本文以及后续的文章将重点介绍Replication策略.Replication策略不但可以在SolrCloud中起到leader到replica的数据同步,也可以在用多个单独的Solr来实现主从同步.本文先介绍在SolrCloud的leader到replica的数据同步,下一篇

zg手册 之 python2.7.7源码分析(4)-- pyc字节码文件

什么是字节码 python解释器在执行python脚本文件时,对文件中的python源代码进行编译,编译的结果就是byte code(字节码) python虚拟机执行编译好的字节码,完成程序的运行 python会为导入的模块创建字节码文件 字节码文件的创建过程 当a.py依赖b.py时,如在a.py中import b python先检查是否有b.pyc文件(字节码文件),如果有,并且修改时间比b.py晚,就直接调用b.pyc 否则编译b.py生成b.pyc,然后加载新生成的字节码文件 字节码对象