优化算法比较的实验结果比较(BGD,SGD,MBGD,Momentum,Nesterov,Adagrad,RMSprop)

最近在学习神经网络的优化算法,发现网上有很多的算法介绍,但是却没有算法实现和实验对比,所以我就用python实现了BGD,SGD,MBGD,Momentum,Nesterov,Adagrad,RMSprop等算法,另外的Adam和NAdam算法是将Momentum,Nesterov,Adagrad几项合并起来的算法,属于工程方面的内容,所以我就没有实现了。
算法原理主要参考文献是:
整体算法参考:深度解读最流行的优化算法:梯度下降
整体算法参考:深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
Momentum 算法实现参考: Deep Learning 最优化方法之Nesterov(牛顿动量)

原文地址:https://www.cnblogs.com/x739400043/p/9661451.html

时间: 2024-10-29 07:41:13

优化算法比较的实验结果比较(BGD,SGD,MBGD,Momentum,Nesterov,Adagrad,RMSprop)的相关文章

各种优化方法总结比較(sgd/momentum/Nesterov/adagrad/adadelta)

前言 这里讨论的优化问题指的是,给定目标函数f(x),我们须要找到一组參数x.使得f(x)的值最小. 本文下面内容如果读者已经了解机器学习基本知识,和梯度下降的原理. SGD SGD指stochastic gradient descent,即随机梯度下降.是梯度下降的batch版本号. 对于训练数据集,我们首先将其分成n个batch,每一个batch包括m个样本.我们每次更新都利用一个batch的数据.而非整个训练集. 即: xt+1=xt+Δxt Δxt=?ηgt 当中.η为学习率,gt为x在

优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误

优化算法 - 特点

Optimizer 1.选择哪种优化算法并没有达成共识 2.具有自适应学习率(以RMSProp 和AdaDelta 为代表)的算法族表现得相当鲁棒,不分伯仲,但没有哪个算法能脱颖而出. 3.对于当前流行的优化算法包括括SGD.具动量的SGD.RMSProp.具动量的RMSProp.AdaDelta 和Adam而言,选择哪一个算法似乎主要取决于使用者对算法的熟悉程度(以便调节超参数) 4.基本不用二阶近似优化算法 -SGD SGD实际就是min-batch的实现,为最基础的优化算法,当今大部分优化

几种常见的优化算法

我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题"在一定成本下,如何使利润最大化"等.最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称.随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优

机器学习几种常见优化算法介绍

机器学习几种常见优化算法介绍 https://blog.csdn.net/class_brick/article/details/78949145 1. 梯度下降法(Gradient Descent) 2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods) 3. 共轭梯度法(Conjugate Gradient) 4. 启发式优化方法 5. 解决约束优化问题--拉格朗日乘数法 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企

优化算法1-梯度下降

1.1     梯度下降 梯度下降,全称Grandient Descent,简称GD. 梯度下降是一种非常通用的优化算法,能够为大范围的问题找到最优解.梯度下降的中心思想就是迭代地调整参数,从而使成本函数最小化. 首先,初始化一个随机的θ值(可设θ=0),然后逐步改进,每次踏出一步,就尝试降低一点成本函数,直到算法收敛出一个最小值,见下图所示. 梯度下降中一个重要的参数是每一步的步长,取决于超参数学习率.如果学习率太低,算法需要经过大量迭代才能收敛,这将消耗很长时间:如果学习率太高,可能会直接跳

深度解读最流行的优化算法:梯度下降

深度解读最流行的优化算法:梯度下降 By 机器之心2016年11月21日 15:08 梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法.本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法.我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战.(本文的中文版 PDF 下载地址) 目录: 梯度下降的各种变体 批量梯度下降(Batch gradient descent)

优化算法——拟牛顿法之DFP算法

一.牛顿法 在博文"优化算法--牛顿法(Newton Method)"中介绍了牛顿法的思路,牛顿法具有二阶收敛性,相比较最速下降法,收敛的速度更快.在牛顿法中使用到了函数的二阶导数的信息,对于函数,其中表示向量.在牛顿法的求解过程中,首先是将函数在处展开,展开式为: 其中,,表示的是目标函数在的梯度,是一个向量.,表示的是目标函数在处的Hesse矩阵.省略掉最后面的高阶无穷小项,即为: 上式两边对求导,即为: 在基本牛顿法中,取得最值的点处的导数值为,即上式左侧为.则: 求出其中的:

梯度下降优化算法综述

本文翻译自Sebastian Ruder的"An overview of gradient descent optimization algoritms",作者首先在其博客中发表了这篇文章,其博客地址为:An overview of gradient descent optimization algoritms,之后,作者将其整理完放在了arxiv中,其地址为:An overview of gradient descent optimization algoritms,在翻译的过程中以