sklearn中的朴素贝叶斯模型及其应用

1.使用朴素贝叶斯模型对iris数据集进行花分类

尝试使用3种不同类型的朴素贝叶斯:

高斯分布型

多项式型

伯努利型

from sklearn.datasets import load_iris

iris=load_iris()

from sklearn.naive_bayes import GaussianNB

gnb=GaussianNB() #模型

pred=gnb.fit(iris.data,iris.target) #训练

y_pred=pred.predict(iris.data) #分类

print(iris.data.shape[0],(iris.target!=y_pred).sum())

from sklearn import datasets

iris=datasets.load_iris()

from sklearn.naive_bayes import BernoulliNB

gnb=BernoulliNB()   #构造

pred=gnb.fit(iris.data,iris.target)   #拟合

y_pred=pred.predict(iris.data)  #预测

print(iris.data.shape[0],(iris.target!=y_pred).sum())

from sklearn imp

ort datasets

iris=datasets.load_iris()

from sklearn.naive_bayes import MultinomialNB

gnb=MultinomialNB()   #构造

pred=gnb.fit(iris.data,iris.target)   #拟合

y_pred=pred.predict(iris.data)  #预测

print(iris.data.shape[0],(iris.target!=y_pred).sum())

2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。

from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
gnb=GaussianNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean())

from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import cross_val_score
gnb=BernoulliNB()
scores=cross_val_score(gnb,iris.data,iris.target,cv=10)
print("Accuracy:%.3f"%scores.mean())

from sklearn.naive_bayes import MultinomialNB

from sklearn.model_selection import cross_val_score

gnb=MultinomialNB()

scores=cross_val_score(gnb,iris.data,iris.target,cv=10)

print("Accuracy:%.3f"%scores.mean())


  





def preprocessing(text):
    preprocessed_text=text
return preprocessed_text

import csv
file_path=r‘C:\Users\Administrator\Desktop\SMSSpamCollectionjsn.txt‘
sms=open(file_path,‘r‘,encoding=‘utf-8‘)
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter=‘\t‘)
for line in csv_reader:
    sms_label.append(line[0])
    #sms_data.append(preprosessing(line[1]))
    #sms.close
    sms_label
    sms_data

    sms_label

原文地址:https://www.cnblogs.com/h000/p/10000226.html

时间: 2024-10-13 22:52:42

sklearn中的朴素贝叶斯模型及其应用的相关文章

实现 | 朴素贝叶斯模型算法研究与实例分析

实现 | 朴素贝叶斯模型算法研究与实例分析(白宁超2018年9月4日09:03:21) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯

机器学习基础——带你实战朴素贝叶斯模型文本分类

本文始发于个人公众号:TechFlow 上一篇文章当中我们介绍了朴素贝叶斯模型的基本原理. 朴素贝叶斯的核心本质是假设样本当中的变量服从某个分布,从而利用条件概率计算出样本属于某个类别的概率.一般来说一个样本往往会含有许多特征,这些特征之间很有可能是有相关性的.为了简化模型,朴素贝叶斯模型假设这些变量是独立的.这样我们就可以很简单地计算出样本的概率. 想要回顾其中细节的同学,可以点击链接回到之前的文章: 机器学习基础--让你一文学会朴素贝叶斯模型 在我们学习算法的过程中,如果只看模型的原理以及理

我理解的朴素贝叶斯模型

我理解的朴素贝叶斯模型 我想说:"任何事件都是条件概率."为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础.换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率. 条件概率是朴素贝叶斯模型的基础. 假设,你的xx公司正在面临着用户流失的压力.虽然,你能计算用户整体流失的概率(流失用户数/用户总数).但这个数字并没有多大意义,因为资源是有限的,利用这个数字你只能撒胡椒面似的把钱撒在所有用户上,显然不经济.你非常想根据用户的某种行为,精确地估计一

机器学习Matlab打击垃圾邮件的分类————朴素贝叶斯模型

该系列来自于我<人工智能>课程回顾总结,以及实验的一部分进行了总结学习机 垃圾分类是有监督的学习分类最经典的案例,本文首先回顾了概率论的基本知识.则以及朴素贝叶斯模型的思想.最后给出了垃圾邮件分类在Matlab中用朴素贝叶斯模型的实现 1.概率 1.1 条件概率 定义:事件B发生的情况下,事件A发生的概率记作条件概率P(A|B) P(A|B)=P(A∧B)P(B) 条件概率也叫后验概率.无条件概率也叫先验概率(在没有不论什么其他信息存在的情况下关于命题的信度) 能够得到乘法规则: P(A∧B)

我理解的朴素贝叶斯模型【转】

转自:http://www.cnblogs.com/nxld/p/6607943.html 我想说:"任何事件都是条件概率."为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础.换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率. 条件概率是朴素贝叶斯模型的基础. 假设,你的xx公司正在面临着用户流失的压力.虽然,你能计算用户整体流失的概率(流失用户数/用户总数).但这个数字并没有多大意义,因为资源是有限的,利用这个数字你只能撒胡椒面似的把钱

机器学习Matlab实战之垃圾邮件分类————朴素贝叶斯模型

本系列来自于我<人工智能>课程复习总结以及机器学习部分的实验总结 垃圾邮件分类是监督学习分类中一个最经典的案例,本文先复习了基础的概率论知识.贝叶斯法则以及朴素贝叶斯模型的思想,最后给出了垃圾邮件分类在Matlab中用朴素贝叶斯模型的实现 1.概率 1.1 条件概率 定义:事件B发生的情况下,事件A发生的概率记作条件概率P(A|B) P(A|B)=P(A∧B)P(B) 条件概率也叫后验概率,无条件概率也叫先验概率(在没有任何其它信息存在的情况下关于命题的信度) 可以得到乘法规则: P(A∧B)

PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes

http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑的表示. 随机变量的独立性 [PGM:概率论基础知识:独立性性质的利用] 条件参数化方法 Note: P(I), P(S | i0), P(S | i1)都是二项式分布,都只需要一个参数. 皮皮blog 朴素贝叶斯模型naive Bayes 朴素贝叶斯模型的学生示例 {这个示例很好的阐述了什么是朴素

[白话解析] 深入浅出朴素贝叶斯模型原理及应用

[白话解析] 深入浅出朴素贝叶斯模型原理及应用 0x00 摘要 朴素贝叶斯模型是机器学习中经常提到的概念.但是相信很多朋友都是知其然而不知其所以然.本文将尽量使用易懂的方式介绍朴素贝叶斯模型原理,并且通过具体应用场景和源码来帮助大家深入理解这个概念. 0x01 IT相关概念 1. 分类问题 已知m个样本 (x1,y1), ...... (xm,ym),x是特征变量,y是对应的类别.要求得一个模型函数或者映射规则h,对于新的样本 xt,能够尽量准确的预测出 yt = h(xt). 我们也可以从概率

机器学习基础——让你一文学会朴素贝叶斯模型

今天这篇文章和大家聊聊朴素贝叶斯模型,这是机器学习领域非常经典的模型之一,而且非常简单,适合初学者入门. 朴素贝叶斯模型,顾名思义和贝叶斯定理肯定高度相关.之前我们在三扇门游戏的文章当中介绍过贝叶斯定理,我们先来简单回顾一下贝叶斯公式: \[P(A|B)=\frac{P(A)P(B|A)}{P(B)}\] 我们把\(P(A)\)和\(P(B)\)当做先验概率,那么贝叶斯公式就是通过先验和条件概率推算后验概率的公式.也就是寻果溯因,我们根据已经发生的事件去探究导致事件发生的原因.而朴素贝叶斯模型正