题目
题目大意
已知\(C(m, n) = m! / (n!(m - n)!)\), 输入整数\(p\), \(q\), \(r\), \(s\)(\(p ≥ q\), \(r ≥ s\), \(p\), \(q\), \(r\), \(s ≤ 10000\)), 计算\(C(p, q) / C(r, s)\)。输出保证不超过\(10^8\), 保留\(5\)位小数
题解
这道题还是挺水吧...
首先如果直接算出\(C(p, q)\)和\(C(r, s)\)是肯定不可能的, C++存不下这么大的数。
这时候就要用到唯一分解定理, 根据组合数的定义, 显然分子分母可以约分, 那么就可以先预处理出小于10000
的每个质数, 并求出\(p!\), \(q!\), \((p - q)!\), \(r\), \(s\), \((r - s)!\)的每个质因子的幂,进而表示出\(C(p, q) / C(r, s)\), 最后用cmath
库中的pow
函数计算就可以了。
当然这道题也可以暴力边乘边除来防止答案太大, 虽然精度损失有点大但也可以过这道题了
代码
唯一分解定理:
#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
std::vector<int> prime;
int power[10000];
int p, q, r, s;
double ans;
bool is_prime[10000];
inline void AddInteger(register int, const int&);
inline void AddFactorial(const int&, const int&);
int main(int argc, char const *argv[]) {
freopen("test.txt", "w", stdout);
memset(is_prime, 1, sizeof(is_prime));
is_prime[0] = is_prime[1] = 0;
for (register int i(2); i <= 10000; ++i) {
if (is_prime[i]) {
prime.push_back(i);
for (register int j(2); i * j <= 10000; ++j) {
is_prime[i * j] = 0;
}
}
}
while (~scanf("%d %d %d %d", &p, &q, &r, &s)) {
memset(power, 0, sizeof(power));
AddFactorial(p, 1),
AddFactorial(q, -1),
AddFactorial(p - q, -1),
AddFactorial(r, -1),
AddFactorial(s, 1),
AddFactorial(r - s, 1);
ans = 1.0;
for (auto i : prime) {
ans *= pow(double(i), double(power[i]));
}
printf("%.5lf\n", ans);
}
return 0;
}
inline void AddInteger(register int n, const int &d) {
for (auto i : prime) {
if (n == 1) break;
while (!(n % i)) {
n /= i,
power[i] += d;
}
}
}
inline void AddFactorial(const int &n, const int &d) {
for (register int i(1); i <= n; ++i) {
AddInteger(i, d);
}
}
暴力:
#include <cstdio>
#include <algorithm>
double ans, p, q, r, s;
int main(int argc, char const *argv[]) {
while (~scanf("%lf %lf %lf %lf", &p, &q, &r, &s)) {
q = std::min(q, p - q),
s = std::min(s, r - s);
ans = 1.0;
for (register double i(1.0); i <= q || i <= s; ++i) {
if (i <= q) ans = ans * (p - q + i) / i;
if (i <= s) ans = ans / (r - s + i) * i;
}
printf("%.5lf\n", ans);
}
return 0;
}
原文地址:https://www.cnblogs.com/forth/p/9713685.html
时间: 2024-10-08 02:54:33