可视化库-Matplotlib(第三天)

1.画一个基本的图

import numpy as np
import matplotlib.pyplot as plt

# 最基本的一个图,"r--" 线条加颜色, 也可以使用linestyle和color来进行设置 linestyle=‘--‘, color=‘r‘
plt.plot([1, 2, 3, 4, 5], [1, 4, 9, 16, 25], ‘r--‘)

# 画出x轴 和 y轴的坐标,fontsize 打印字体大小
plt.xlabel(‘xlabel‘, fontsize=16)
plt.ylabel(‘ylabel‘, fontsize=16)
plt.show()

2. 画多条直线

tang_numpy = np.arange(0, 10, 0.5)
plt.plot(tang_numpy, tang_numpy, linestyle=‘--‘, color=‘r‘, marker=‘o‘)
plt.show()

plt.plot(tang_numpy, tang_numpy**2,‘r--‘,
         tang_numpy, tang_numpy**3, ‘go‘,
         tang_numpy, tang_numpy, ‘bs‘,
         )
plt.show()

3. linewidth指定线条的宽度,marker=‘o‘, markerfacecolor表示mark颜色,markersize # 表示标志物的大小

x = np.linspace(-10, 10)
y = np.sin(x)
plt.plot(x, y, linewidth=2.0)
plt.show()
# marker标志物的点, markerfacecolor表示mark颜色,markersize #表示标志物的大小
plt.plot(x, y, color=‘b‘, linestyle=‘:‘, marker=‘o‘, markerfacecolor=‘r‘, markersize=10)
plt.show()

4. plt.setp(line, color=‘r‘, linewidth=2.0, alpha=0.5) # plot后进行单独的属性设置

line = plt.plot(x, y)
plt.setp(line, color=‘r‘, linewidth=2.0, alpha=0.4)
plt.show()

5.plt.subplot(211) 子图 211表示的是画的图是2行一列的,最后一个1表示子图里面的第一个图

原文地址:https://www.cnblogs.com/my-love-is-python/p/10235880.html

时间: 2024-10-09 19:00:31

可视化库-Matplotlib(第三天)的相关文章

数据可视化库-Matplotlib基本操作

python-3.7     pycharm matplotlib 2.2.3 """ 数据可视化库-Matplotlib 时间:2018\9\12 0012 """ import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt print("""\n-------------------

Python数据可视化库-Matplotlib(一)

今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废话不多说,我们直接通过例子来进行讲解. 首先我们有一组数据如下: 我们可以看到,这组数据有日期,还有日期对应的值,因为这组数据中的日期格式不是标准的日期格式 那么我们对数据做一下转换,取1948年的整年的数据,来进行一个绘图操作 import pandas as pd unrate = pd.rea

Python可视化库Matplotlib的使用

一.导入数据 import pandas as pd unrate = pd.read_csv('unrate.csv') unrate['DATE'] = pd.to_datetime(unrate['DATE']) print(unrate.head(12)) 结果如下: DATE VALUE 0 1948-01-01 3.4 1 1948-02-01 3.8 2 1948-03-01 4.0 3 1948-04-01 3.9 4 1948-05-01 3.5 5 1948-06-01 3.

Pycon 2017: Python可视化库大全

本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visualization Landscape”. 先来一张全景图镇楼~~ 看完这张图是不是有点懵? 别着急,我们一起来看看后面的阐述. python可视化库可以大致分为几类: 基于matplotlib的可视化库 基于JS的可视化库 基于上述两者或其他组合功能的库 基于matplotlib的可视化库 matp

Python进阶(三十九)-数据可视化の使用matplotlib进行绘图分析数据

Python进阶(三十九)-数据可视化の使用matplotlib进行绘图分析数据 ??matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. ??它的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. ??在Linux下比较著名的数据图工具还有gnuplot

Python 可视化工具 Matplotlib

英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplotlib,并推荐了一个学习使用Matplotlib的步骤. 简介 对于新手来说,进入Python可视化领域有时可能会令人感到沮丧.Python有很多不同的可视化工具,选择一个正确的工具有时是一种挑战. 例如,即使两年过去了,这篇<Overview of Pyt

Python进阶(四十)-数据可视化の使用matplotlib进行绘图

Python进阶(四十)-数据可视化の使用matplotlib进行绘图 前言 ??matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包.我将在这篇文章中介绍matplotlib API的核心对象,并介绍如何使用这些对象来实现绘图.实际上,matplotlib的对象体系严谨而有趣,为使用者提供了巨大的发挥空间.用户在熟悉了核心对象之后,可以轻易的定制图像.matplotlib的对象体系也是计算机图形学的一个优秀范例.即使你不是Python程序员,你也可以从文中

学机器学习,不会数据分析怎么行——数据可视化分析(matplotlib)

前言 前面两篇文章介绍了 python 中两大模块 pandas 和 numpy 的一些基本使用方法,然而,仅仅会处理数据还是不够的,我们需要学会怎么分析,毫无疑问,利用图表对数据进行分析是最容易的,通过图表可以很好地理解数据之间的关联性以及某些数据的变化趋势.因此,将在这篇博客中介绍 python 中可视化工具 matplotlib 的使用. Figure 和 Subplot matplotlib 的图像都位于 Figure 对象中,可以用 plt.figure 创建一个新的 Figure f

超级好用的 Java 数据可视化库:Tablesaw

本文适合刚学习完 Java 语言基础的人群,跟着本文可了解和使用 Tablesaw 项目.示例均在 Windows 操作系统下演示 本文作者:HelloGitHub-秦人 HelloGitHub 推出的<讲解开源项目>系列,今天给大家带来一款基于 Java 语言的数据可视化库开源项目--Tablesaw Tablesaw是一款 Java 的数据可视化库.它主要包括两部分:一部分是数据解析库,另一部分是数据可视化库.数据解析库主要是加载数据,对数据进行操作(转化,过滤,汇总等).数据可视化库就是