【采集层】Kafka 与 Flume 如何选择

采集层 主要可以使用Flume, Kafka两种技术。

Flume:Flume 是管道流方式,提供了很多的默认实现,让用户通过参数部署,及扩展API.

Kafka:Kafka是一个可持久化的分布式的消息队列。

  • Kafka 是一个非常通用的系统。你可以有许多生产者和很多的消费者共享多个主题Topics。相比之下,Flume是一个专用工具被设计为旨在往HDFS,HBase发送数据。它对HDFS有特殊的优化,并且集成了Hadoop的安全特性。所以,Cloudera 建议如果数据被多个系统消费的话,使用kafka;如果数据被设计给Hadoop使用,使用Flume。
  • 正如你们所知Flume内置很多的source和sink组件。然而,Kafka明显有一个更小的生产消费者生态系统,并且Kafka的社区支持不好。希望将来这种情况会得到改善,但是目前:使用Kafka意味着你准备好了编写你自己的生产者和消费者代码。如果已经存在的Flume Sources和Sinks满足你的需求,并且你更喜欢不需要任何开发的系统,请使用Flume。
  • Flume可以使用拦截器实时处理数据。这些对数据屏蔽或者过量是很有用的。Kafka需要外部的流处理系统才能做到。
  • Kafka和Flume都是可靠的系统,通过适当的配置能保证零数据丢失。然而,Flume不支持副本事件。于是,如果Flume代理的一个节点奔溃了,即使使用了可靠的文件管道方式,你也将丢失这些事件直到你恢复这些磁盘。如果你需要一个高可靠行的管道,那么使用Kafka是个更好的选择。
  • Flume和Kafka可以很好地结合起来使用。如果你的设计需要从Kafka到Hadoop的流数据,使用Flume代理并配置Kafka的Source读取数据也是可行的:你没有必要实现自己的消费者。你可以直接利用Flume与HDFS及HBase的结合的所有好处。你可以使用Cloudera Manager对消费者的监控,并且你甚至可以添加拦截器进行一些流处理。

Flume和Kafka可以结合起来使用。通常会使用Flume + Kafka的方式。其实如果为了利用Flume已有的写HDFS功能,也可以使用Kafka + Flume的方式。

时间: 2024-09-30 22:08:47

【采集层】Kafka 与 Flume 如何选择的相关文章

2016年大数据Spark“蘑菇云”行动之spark streaming消费flume采集的kafka数据Directf方式

王家林老师的课程:2016年大数据Spark"蘑菇云"行动之spark streaming消费flume采集的kafka数据Directf方式作业.     一.基本背景 Spark-Streaming获取kafka数据的两种方式Receiver与Direct的方式,本文介绍Direct的方式.具体的流程是这样的: 1.Direct方式是直接连接到kafka的节点上获取数据了. 2.基于Direct的方式:周期性地查询Kafka,来获得每个topic+partition的最新的offs

开源日志系统比较:scribe、chukwa、kafka、flume

1. 背景介绍 许多公司的平台每天会产生大量的日志(一般为流式数据,如,搜索引擎的pv,查询等),处理这些日志需要特定的日志系统,一般而言,这些系统需要具有以下特征: (1) 构建应用系统和分析系统的桥梁,并将它们之间的关联解耦: (2) 支持近实时的在线分析系统和类似于Hadoop之类的离线分析系统: (3) 具有高可扩展性.即:当数据量增加时,可以通过增加节点进行水平扩展. 本文从设计架构,负载均衡,可扩展性和容错性等方面对比了当今开源的日志系统,包括facebook的scribe,apac

scribe、chukwa、kafka、flume日志系统对比

scribe.chukwa.kafka.flume日志系统对比 1. 背景介绍许多公司的平台每天会产生大量的日志(一般为流式数据,如,搜索引擎的pv,查询等),处理 这些日志需要特定的日志系统,一般而言,这些系统需要具有以下特征:(1) 构建应用系统和分析系统的桥梁,并将它们之间的关联解耦:(2) 支持近实时的在线分析系统和类似于Hadoop之类的离线分析系统:(3) 具有高可扩展性.即:当数据量增加时,可以通过增加节点进行水平扩展. 本文从设计架构,负载均衡,可扩展性和容错性等方面对比了当今开

Using Kafka with Flume

这个文档是 Cloudera Distribution of Apache Kafka 1.3.x. 其他版本的文档在Cloudera Documentation. Using Kafka with Flume 在CDH 5.2.0 及更高的版本中, Flume 包含一个Kafka source and sink.使用它们可以让数据从Kafka流入Hadoop或者从任何Flume source 流入Kafka. 重要提示:不能配置一个Kafka source发送数据到 a Kafka sink.

KafKa+Zookeeper+Flume部署脚本

喜欢学习的朋友可以收藏 愿意了解框架技术或者源码的朋友直接加求求(企鹅):2042849237

hadoop+kafka+strom+flume第一步

1.所有主机需要安装JDK,并配置JDK环境变量 2.所有主机安装SSH,并相互间实现无密访问 3.修改主机hosts :文件/etc/hosts,保证各机器通过机器名可以互访 4.安装python 2.6及以上(storm用) 5.ZeroMQ Java代码 wget http://download.zeromq.org/zeromq-2.1.7.tar.gz tar -xzf zeromq-2.1.7.tar.gz cd zeromq-2.1.7 ./configure make sudo 

Flume概念与原理、与Kafka优势对比

1 .背景 flume是由cloudera软件公司产出的可分布式日志收集系统,后与2009年被捐赠了apache软件基金会,为hadoop相关组件之一.尤其近几年随着flume的不断被完善以及升级版本的逐一推出,特别是flume-ng;同时flume内部的各种组件不断丰富,用户在开发的过程中使用的便利性得到很大的改善,现已成为apache top项目之一. 2 .概述 1.  什么是flume? apache Flume 是一个从可以收集例如日志,事件等数据资源,并将这些数量庞大的数据从各项数据

大数据学习文章

ZooKeeper: ZooKeeper浅析:http://www.cnblogs.com/sharpxiajun/archive/2013/06/02/3113923.html HDFS: MapReduce程序的工作过程: http://www.aboutyun.com/thread-15494-1-2.html HDFS小文件处理解决方案总结:http://www.aboutyun.com/thread-14227-1-1.html Hadoop 学习总结之一:HDFS简介:http://

Flume和Kafka完成实时数据的采集

Flume和Kafka完成实时数据的采集 写在前面 Flume和Kafka在生产环境中,一般都是结合起来使用的.可以使用它们两者结合起来收集实时产生日志信息,这一点是很重要的.如果,你不了解flume和kafka,你可以先查看我写的关于那两部分的知识.再来学习,这部分的操作,也是可以的. 实时数据的采集,就面临一个问题.我们的实时数据源,怎么产生呢?因为我们可能想直接获取实时的数据流不是那么的方便.我前面写过一篇文章,关于实时数据流的python产生器,文章地址:http://blog.csdn