算法题库

1. 时针分针重合几次

表面上有60个小格,每小格代表一分钟,

时针每分钟走1/12小格,分针每分钟走1小格,从第一次重合到第二次重合分针比时针多走一圈即60小格,所以

60/(1-1/12)=720/11

每隔720/11分才重合一次(而并不是每小时重合一次)

1440里有22个720/11,如果说算上0点和24点,那也是重合23次而已,但我觉得0点应该算到前一天的24点头上,所以每一天循环下来重合22次啊

2. 找出字符串的最长不重复子串,输出长度

建一个256个单元的数组,每一个单元代表一个字符,数组中保存上次该字符上次出现的位置;

依次读入字符串,同时维护数组的值;

如果遇到冲突了,就返回冲突字符中保存的位置,继续第二步。也可以用hashmap保存已经出现的字符和字符的位置

3. 说是有一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出

现的前十个词。

先用哈希,统计每个词出现的次数,然后在用在N个数中找出前K大个数的方法找出出现

次数最多的前10个词。

4. 如题3,但是车次文件特别大,没有办法一次读入内存。

1) 直接排序,写文件时,同时写入字符串及其出现

次数。

2) 可以用哈希,比如先根据字符串的第一个字符将字符串换分为多个区域,每个区域的字符串写到一个文件内,然后再用哈希+堆统计每个区域内前10个频率最高的字符串,最后求出所有字符串中前10个频率最高的字符串。

5. 有一个整数n,将n分解成若干个整数之和,问如何分解能使这些数的乘积最大,输出这个乘积m。例如:n=12

(1)分解为1+1+1+…+1,12个1, m=1*1*1……*1=1

(2)分解为2+2+…+2,6个2, m=64

(3)分解为3+3+3+3,4个3, m=81

(4)大于等于4时分解时只能分解为2和3,且2最多两个

f(n) = 3*f(n-3) n>4

f(4) = 2*2

f(3) = 3

f(2) = 2分解为4+4+4,3个4, m=64

6. 求数组n中出现次数超过一半的数

把数组分成[n/2]组,则至少有一组包含重复的数,因为如果无重复数,则最多只有出现次数等于一半的数。算法如下:

k<-n;

while k>3 do

把数组分成[k/2]组;

for i=1 to [k/2] do

if 组内2个数相同,则任取一个数留下;

else 2个数同时扔掉;

k<-剩下的数

if k=3

then 任取2个数进行比较;

if 两个数不同,则2个数都扔掉

else 任取一个数

if k=2 or 1 then 任取一数

7. A文件中最多有n个正整数,而且每个数均小于n,n <=10的七次方。不会出现重复的数。

要求对A文件中的数进行排序,可用内存为1M,磁盘可用空间足够。

不要把任何问题都往很复杂的算法上靠,最直接最简单的解决问题才是工程师应有的素质,

题目给的很有分寸:n个数,都小于n,两两不同,1M=10^6byte=10^7bit的内存,n <10^7

思路:

把1M内存看作是一个长度为10^7的位数组,每一位都初始化为0

从头扫描n个数,如果碰到i,就把位数组的第i个位置置为1,

1M内存有点少, (1M = 8M bits), 可以代表8M整数,现在n <=10的七次方,你可以读2遍文件,就可以完成排序了。第一次排n <8M得数, 第2遍排 8M <n <10的七次方的数。

8. 有10亿个杂乱无章的数,怎样最快地求出其中前1000大的数。

1) 建一个1000个数的堆,复杂度为N*(log1000)=10N

2) 1.用每一个BIT标识一个整数的存在与否,这样一个字节可以标识8个整数的存在与否,对于所有32位的整数,需要512Mb,所以开辟一个512Mb的字符数组A,初始全0

2.依次读取每个数n,将A[n>>3]设置为A[n>>3]|(1<<n%8),相当于将每个数的对应位设置为1

3.在A中,从大到小读取1000个值为1的数,就是最大的1000个数了。

这样读文件就只需要1遍,在不考虑内存开销的情况下,应该是速度最快的方法了。

9. 一棵树节点1, 2, 3, ... , n. 怎样实现:

先进行O(n)预处理,然后任给两个节点,用O(1)判断它们的父子关系

dfs一遍,记录每个结点的开始访问时间Si和结束访问时间Ei

对于两个节点i,j,若区间[Si,Ei]包含[Sj,Ej],则i是j的祖先。给每个节点哈夫曼编码也行,但只适合一般的二叉树,而实际问题未必是Binary的,所以编码有局限性

10. 给定一个二叉树,求其中N(N>=2)个节点的最近公共祖先节点。每个节点只有左右孩

子指

针,没有父指针。

后序递归给每个节点打分,每个节点的分数=左分数+右分数+k,如果某孩子是给定节点则+1

最深的得分为N的节点就是所求吧,细节上应该不用递归结束就可以得到这个节点

11. 如何打印如下的螺旋队列:

21 22 。。。。

20 7 8 9 10

19 6 1 2 11

18 5 4 3 12

17 16 15 14 13

#include <stdio.h>

#define max(a,b) ((a)<(b)?(b):(a))

#define abs(a) ((a)>0?(a):-(a))

int foo(int x, int y)

{

int t = max(abs(x), abs(y));

int u = t + t;

int v = u - 1;

v = v * v + u;

if (x == -t)

v += u + t - y;

else if (y == -t)

v += 3 * u + x - t;

else if (y == t )

v += t - x;

else

v += y - t;

return v;

}

int main()

{

int x, y;

for (y=-2;y<=2;y++)

{

for (x=-2;x<=2;x++)

printf("%5d", foo(x, y));

printf("\n");

}

return 0;

}

第 0 层规定为中间的那个 1,第 1 层为 2 到 9,第 2 层为 10 到 25,……好像看出一点名堂来了?注意到 1、9、25、……不就是平方数吗?而且是连续奇数(1、3、5、……)的平方数。这些数还跟层数相关,推算一下就可以知道第 t 层之内一共有 (2t-1)^2 个数,因而第 t 层会从 [(2t-1)^2] + 1 开始继续往外螺旋。给定坐标 (x,y),如何知道该点处于第几层?so easy,层数 t = max(|x|,|y|)。

知道了层数,接下来就好办多了,这时我们就知道所求的那点一定在第 t 层这个圈上,顺着往下数就是了。要注意的就是螺旋队列数值增长方向和坐标轴正方向并不一定相同。我们可以分成四种情况——上、下、左、右——或者——东、南、西、北,分别处于四条边上来分析。

东|右:x == t,队列增长方向和 y 轴一致,正东方向(y = 0)数值为 (2t-1)^2 + t,所以 v = (2t-1)^2 + t + y

南|下:y == t,队列增长方向和 x 轴相反,正南方向(x = 0)数值为 (2t-1)^2 + 3t,所以 v = (2t-1)^2 + 3t - x

西|左:x == -t,队列增长方向和 y 轴相反,正西方向(y = 0)数值为 (2t-1)^2 + 5t,所以 v = (2t-1)^2 + 5t - y

北|上:y == -t,队列增长方向和 x 轴一致,正北方向(x = 0)数值为 (2t-1)^2 + 7t,所以 v = (2t-1)^2 + 7t + x

12. 一个整数,知道位数,如何判断它是否能被3整除,不可以使用除法和模运算

首先 3x=2^n+1时 仅当 n 为奇数才可能 因为2^n = 3x + (-1)^n;所以该问题就转化为了

找到最后一个为1的位a,看看向前的一个1(b)和这个位的距离,如果为偶数的距离则不能整除,如果是奇数,去除b之后的位继续判断

13. seq=[a,b,...,z,aa,ab,...,az,ba,bb...,bz,...za,zb,...,zz,aaa...],求[a-z]+(从a到z任意字符组成的字符串)s在seq的位置,即排在第几

本质就是26进制。

大家都知道,看一个数是否能被2整除只需要看它的个位能否被2整除即可。可是你想过为什么吗?这是因为10能被2整除,因此一个数10a+b能被2整除当且仅当b能被2整除。大家也知道,看一个数能否被3整除只需要看各位数之和是否能被3整除。这又是为什么呢?答案或多或少有些类似:因为10^n-1总能被3整除。2345可以写成2*(999+1) + 3*(99+1) + 4*(9+1) + 5,展开就是2*999+3*99+4*9 + 2+3+4+5。前面带了数字9的项肯定都能被3整除了,于是要看2345能否被3整除就只需要看2+3+4+5能否被3整除了。当然,这种技巧只能在10进制下使用,不过类似的结论可以推广到任意进制。

注意到36是4的整数倍,而ZZZ...ZZ除以7总是得555...55。也就是说,判断一个36进制数能否被4整除只需要看它的个位,而一个36进制数能被7整除当且仅当各位数之和能被7整除。如果一个数同时能被4和7整除,那么这个数就一定能被28整除。于是问题转化为,有多少个连续句子满足各位数字和是7的倍数,同时最后一个数是4的倍数。这样,我们得到了一个O(n)的算法:用P[i]表示前若干个句子除以7的余数为i有多少种情况,扫描整篇文章并不断更新P数组。当某句话的最后一个字能被4整除时,假设以这句话结尾的前缀和除以7余x,则将此时P[x]的值累加到最后的输出结果中(两个前缀的数字和除以7余数相同,则较长的前缀多出来的部分一定整除7)。

上述算法是我出这道题的本意,但比赛后我见到了其它各种各样新奇的算法。比如有人注意到36^n mod 28总是等于8,利用这个性质也可以构造出类似的线性算法来。还有人用动态规划(或者说递推)完美地解决了这个问题。我们用f[i,j]表示以句子i结束,除以28余数为j的文本片段有多少个;处理下一句话时我们需要对每一个不同的j进行一次扫描,把f[i-1,j]加进对应的f[i,j‘]中。最后输出所有的f[i,0]的总和即可。这个动态规划可以用滚动数组,因此它的空间同前面的算法一样也是常数的。

如果你完全不知道我在说什么,你可以看看和进位制、同余相关的文章。另外,我之前还曾出过一道很类似的题(VOJ1090),你可以对比着看一看。

有一个整数n,写一个函数f(n),返回0到n之间出现的"1"的个数。比如f(13)=6,现在f(1)=1,问有哪些n能满足f(n)=n?

例如:f(13)=6, 因为1,2,3,4,5,6,7,8,9,10,11,12,13.数数1的个数,正好是6.

public class Test {

public int n = 2;

public int count = 0;

public void BigestNumber(int num) {

for (int i = 1; i <= num; i++) {

int m = 0;

int j = i;

while (j > 0) {

m = j % 10;

if (m == 1)

count++;

if (j > 0)

j = j / 10;

}

}

System.out.println("f(" + num + ")=" + count);

}

public static void main(String args[]) {

Test t = new Test();

long begin = System.currentTimeMillis();

t.BigestNumber(10000000);

long end = System.currentTimeMillis();

System.out.println("总时间" + (end-begin)/1000 + "秒");

}

}

结果:

f(10000000)=7000001

总时间5秒

1、将一整数逆序后放入一数组中(要求递归实现)

void convert(int *result, int n) {

if(n>=10)

convert(result+1, n/10);

*result = n%10;

}

int main(int argc, char* argv[]) {

int n = 123456789, result[20]={};

convert(result, n);

printf("%d:", n);

for(int i=0; i<9; i++)

printf("%d", result);

}

2、求高于平均分的学生学号及成绩(学号和成绩人工输入)

double find(int total, int n) {

int number, score,  average;

scanf("%d", &number);

if(number != 0) {

scanf("%d", &score);

average = find(total+score, n+1);

if(score >= average)

printf("%d:%d\n", number, score);

return average;

} else {

printf("Average=%d\n", total/n);

return total/n;

}

}

int main(int argc, char* argv[]) {

find(0, 0);

}

3、递归实现回文判断(如:abcdedbca就是回文,判断一个面试者对递归理解的简单程序)

int find(char *str, int n) {

if(n<=1) return 1;

else if(str[0]==str[n-1]) return find(str+1, n-2);

else  return 0;

}

int main(int argc, char* argv[]) {

char *str = "abcdedcba";

printf("%s: %s\n", str, find(str, strlen(str)) ? "Yes" : "No");

}

4、组合问题(从M个不同字符中任取N个字符的所有组合)

void find(char *source, char *result, int n) {

if(n==1) {

while(*source)

printf("%s%c\n", result, *source++);

} else {

int i, j;

for(i=0; source != 0; i++);

for(j=0; result[j] != 0; j++);

for(; i>=n; i--) {

result[j] = *source++;

result[j+1] = ‘\0‘;

find(source, result, n-1);

}

}

}

int main(int argc, char* argv[]) {

int const n = 3;

char *source = "ABCDE", result[n+1] = {0};

if(n>0 && strlen(source)>0 && n<=strlen(source))

find(source, result, 3);

}

5、分解成质因数(如435234=251*17*17*3*2,据说是华为笔试题)

void prim(int m, int n) {

if(m>n) {

while(m%n != 0) n++;

m /= n;

prim(m, n);

printf("%d*", n);

}

}

int main(int argc, char* argv[]) {

int n = 435234;

printf("%d=", n);

prim(n, 2);

}

6、寻找迷宫的一条出路,o:通路; X:障碍。(大家经常谈到的一个小算法题)

#define MAX_SIZE  8

int H[4] = {0, 1, 0, -1};

int V[4] = {-1, 0, 1, 0};

char Maze[MAX_SIZE][MAX_SIZE] = {{‘X‘,‘X‘,‘X‘,‘X‘,‘X‘,‘X‘,‘X‘,‘X‘},

{‘o‘,‘o‘,‘o‘,‘o‘,‘o‘,‘X‘,‘X‘,‘X‘},

{‘X‘,‘o‘,‘X‘,‘X‘,‘o‘,‘o‘,‘o‘,‘X‘},

{‘X‘,‘o‘,‘X‘,‘X‘,‘o‘,‘X‘,‘X‘,‘o‘},

{‘X‘,‘o‘,‘X‘,‘X‘,‘X‘,‘X‘,‘X‘,‘X‘},

{‘X‘,‘o‘,‘X‘,‘X‘,‘o‘,‘o‘,‘o‘,‘X‘},

{‘X‘,‘o‘,‘o‘,‘o‘,‘o‘,‘X‘,‘o‘,‘o‘},

{‘X‘,‘X‘,‘X‘,‘X‘,‘X‘,‘X‘,‘X‘,‘X‘}};

void FindPath(int X, int Y) {

if(X == MAX_SIZE || Y == MAX_SIZE) {

for(int i = 0; i < MAX_SIZE; i++)

for(int j = 0; j < MAX_SIZE; j++)

printf("%c%c", Maze[j], j < MAX_SIZE-1 ? ‘ ‘ : ‘\n‘);

}else for(int k = 0; k < 4; k++)

if(X >= 0 && Y >= 0 && Y < MAX_SIZE && X < MAX_SIZE && ‘o‘ == Maze[X][Y]) {

Maze[X][Y] = ‘ ‘;

FindPath(X+V[k], Y+H[k]);

Maze[X][Y] =‘o‘;

}

}

int main(int argc, char* argv[]) {

FindPath(1,0);

}

7、随机分配座位,共50个学生,使学号相邻的同学座位不能相邻(早些时候用C#写的,没有用C改写)。

static void Main(string[] args)

{

int Tmp = 0, Count = 50;

int[] Seats = new int[Count];

bool[] Students = new bool[Count];

System.Random RandStudent=new System.Random();

Students[Seats[0]=RandStudent.Next(0,Count)]=true;

for(int i = 1; i < Count; ) {

Tmp=(int)RandStudent.Next(0,Count);

if((!Students[Tmp])&&(Seats[i-1]-Tmp!=1) && (Seats[i-1] - Tmp) != -1) {

Seats[i++] = Tmp;

Students[Tmp] = true;

}

}

foreach(int Student in Seats)

System.Console.Write(Student + " ");

System.Console.Read();

}

8、求网格中的黑点分布。现有6*7的网格,在某些格子中有黑点,已知各行与各列中有黑点的点数之和,请在这张网格中画出黑点的位置。(这是一网友提出的题目,说是他笔试时遇到算法题)

#define ROWS 6

#define COLS 7

int iPointsR[ROWS] = {2, 0, 4, 3, 4, 0};           // 各行黑点数和的情况

int iPointsC[COLS] = {4, 1, 2, 2, 1, 2, 1};        // 各列黑点数和的情况

int iCount, iFound;

int iSumR[ROWS], iSumC[COLS], Grid[ROWS][COLS];

int Set(int iRowNo) {

if(iRowNo == ROWS) {

for(int iColNo=0; iColNo < COLS && iSumC[iColNo]==iPointsC[iColNo]; iColNo++)

if(iColNo == COLS-1) {

printf("\nNo.%d:\n", ++iCount);

for(int i=0; i < ROWS; i++)

for(int j=0; j < COLS; j++)

printf("%d%c", Grid[j], (j+1) % COLS ? ‘ ‘ : ‘\n‘);

iFound = 1; // iFound = 1,有解

}

} else {

for(int iColNo=0; iColNo < COLS; iColNo++) {

if(iPointsR[iRowNo] == 0) {

Set(iRowNo + 1);

} else if(Grid[iRowNo][iColNo]==0) {

Grid[iRowNo][iColNo] = 1;

iSumR[iRowNo]++; iSumC[iColNo]++;                                  if(iSumR[iRowNo]<iPointsR[iRowNo] && iSumC[iColNo]<=iPointsC[iColNo])

Set(iRowNo);

else if(iSumR[iRowNo]==iPointsR[iRowNo] && iRowNo < ROWS)

Set(iRowNo + 1);

Grid[iRowNo][iColNo] = 0;

iSumR[iRowNo]--;

iSumC[iColNo]--;

}

}

}

return iFound;     // 用于判断是否有解

}

int main(int argc, char* argv[]) {

if(!Set(0))

printf("Failure!");

}

9、有4种面值的邮票很多枚,这4种邮票面值分别1, 4, 12, 21,现从多张中最多任取5张进行组合,求取出这些邮票的最大连续组合值。(据说是华为2003年校园招聘笔试题)

#define N 5

#define M 5

int k, Found, Flag[N];

int Stamp[M] = {0, 1, 4, 12, 21};

// 在剩余张数n中组合出面值和Value

int Combine(int n, int Value) {

if(n >= 0 && Value == 0) {

Found = 1;

int Sum = 0;

for(int i=0; i<N && Flag != 0; i++) {

Sum += Stamp[Flag];

printf("%d ", Stamp[Flag]);

}

printf("\tSum=%d\n\n", Sum);

}else for(int i=1; i<M && !Found && n>0; i++)

if(Value-Stamp >= 0) {

Flag[k++] = i;

Combine(n-1, Value-Stamp);

Flag[--k] = 0;

}

return Found;

}

int main(int argc, char* argv[]) {

for(int i=1; Combine(N, i); i++, Found=0);

}

10、大整数数相乘的问题。(这是2002年在一考研班上遇到的算法题)

void Multiple(char A[], char B[], char C[]) {

int TMP, In=0, LenA=-1, LenB=-1;

while(A[++LenA] != ‘\0‘);

while(B[++LenB] != ‘\0‘);

int Index, Start = LenA + LenB - 1;

for(int i=LenB-1; i>=0; i--) {

Index = Start--;

if(B != ‘0‘) {

for(int In=0, j=LenA-1; j>=0; j--) {

TMP = (C[Index]-‘0‘) + (A[j]-‘0‘) * (B - ‘0‘) + In;

C[Index--] = TMP % 10 + ‘0‘;

In = TMP / 10;

}

C[Index] = In + ‘0‘;

}

}

}

int main(int argc, char* argv[]) {

char A[] = "21839244444444448880088888889";

char B[] = "38888888888899999999999999988";

char C[sizeof(A) + sizeof(B) - 1];

for(int k=0; k<sizeof(C); k++)

C[k] = ‘0‘;

C[sizeof(C)-1] = ‘\0‘;

Multiple(A, B, C);

for(int i=0; C != ‘\0‘; i++)

printf("%c", C);

}

11、求最大连续递增数字串(如“ads3sl456789DF3456ld345AA”中的“456789”)

int GetSubString(char *strSource, char *strResult) {

int iTmp=0, iHead=0, iMax=0;

for(int Index=0, iLen=0; strSource[Index]; Index++) {

if(strSource[Index] >= ‘0‘ && strSource[Index] <= ‘9‘ &&

strSource[Index-1] > ‘0‘ && strSource[Index] == strSource[Index-1]+1) {

iLen++;                       // 连续数字的长度增1

} else {                          // 出现字符或不连续数字

if(iLen > iMax) {

iMax = iLen;  iHead = iTmp;

}

// 该字符是数字,但数字不连续

if(strSource[Index] >= ‘0‘ && strSource[Index] <= ‘9‘) {

iTmp = Index;

iLen = 1;

}

}

}

for(iTmp=0 ; iTmp < iMax; iTmp++) // 将原字符串中最长的连续数字串赋值给结果串

strResult[iTmp] = strSource[iHead++];

strResult[iTmp]=‘\0‘;

return iMax;     // 返回连续数字的最大长度

}

int main(int argc, char* argv[]) {

char strSource[]="ads3sl456789DF3456ld345AA", char strResult[sizeof(strSource)];

printf("Len=%d, strResult=%s \nstrSource=%s\n",

GetSubString(strSource, strResult), strResult, strSource);

}

12、四个工人,四个任务,每个人做不同的任务需要的时间不同,求任务分配的最优方案。(2005年5月29日全国计算机软件资格水平考试——软件设计师的算法题)。

#include "stdafx.h"

#define N 4

int Cost[N][N] = { {2, 12, 5, 32},  // 行号:任务序号,列号:工人序号

{8, 15, 7, 11},  // 每行元素值表示这个任务由不同工人完成所需要的时间

{24, 18, 9, 6},

{21, 1, 8, 28}};

int MinCost=1000;

int Task[N], TempTask[N], Worker[N];

void Assign(int k, int cost) {

if(k == N) {

MinCost = cost;

for(int i=0; i<N; i++)

TempTask = Task;

} else {

for(int i=0; i<N; i++) {

if(Worker==0 && cost+Cost[k] < MinCost) { // 为提高效率而进行剪枝

Worker = 1; Task[k] = i;

Assign(k+1, cost+Cost[k]);

Worker = 0; Task[k] = 0;

}

}

}

}

int main(int argc, char* argv[]) {

Assign(0, 0);

printf("最佳方案总费用=%d\n", MinCost);

for(int i=0; i<N; i++)

printf("\t任务%d由工人%d来做:%d\n", i, TempTask, Cost[TempTask]);

}

13、八皇后问题,输出了所有情况,不过有些结果只是旋转了90度而已。(回溯算法的典型例题,是数据结构书上算法的具体实现,大家都亲自动手写过这个程序吗?)

#define N 8

int Board[N][N];

int Valid(int i, int j) {  // 判断下棋位置是否有效

int k = 1;

for(k=1; i>=k && j>=k;k++)

if(Board[i-k][j-k]) return 0;

for(k=1; i>=k;k++)

if(Board[i-k][j])  return 0;

for(k=1; i>=k && j+k<N;k++)

if(Board[i-k][j+k]) return 0;

return 1;

}

void Trial(int i, int n) {  // 寻找合适下棋位置

if(i == n) {

for(int k=0; k<n; k++) {

for(int m=0; m<n; m++)

printf("%d ", Board[k][m]);

printf("\n");

}

printf("\n");

} else {

for(int j=0; j<n; j++) {

Board[j] = 1;

if(Valid(i,j))

Trial(i+1, n);

Board[j] = 0;

}

}

}

int main(int argc, char* argv[]) {

Trial(0, N);

}

14、实现strstr功能,即在父串中寻找子串首次出现的位置。(笔试中常让面试者实现标准库中的一些函数)

char * strstring(char *ParentString, char *SubString) {

char *pSubString, *pPareString;

for(char *pTmp=ParentString; *pTmp; pTmp++) {

pSubString = SubString;

pPareString = pTmp;

while(*pSubString == *pPareString && *pSubString != ‘\0‘) {

pSubString++;

pPareString++;

}

if(*pSubString == ‘\0‘)  return pTmp;

}

return NULL;

}

int main(int argc, char* argv[]) {

char *ParentString = "happy birthday to you!";

char *SubString = "birthday";

printf("%s",strstring(ParentString, SubString));

}

15、现在小明一家过一座桥,过桥的时候是黑夜,所以必须有灯。现在小明过桥要1分,小明的弟弟要3分,小明的爸爸要6分,小明的妈妈要8分,小明的爷爷要12分。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30分就会熄灭。问小明一家如何过桥时间最短?(原本是个小小智力题,据说是外企的面试题,在这里用程序来求解)

#include "stdafx.h"

#define N    5

#define SIZE 64

// 将人员编号:小明-0,弟弟-1,爸爸-2,妈妈-3,爷爷-4

// 每个人的当前位置:0--在桥左边, 1--在桥右边

int Position[N];

// 过桥临时方案的数组下标; 临时方案; 最小时间方案;

int Index, TmpScheme[SIZE], Scheme[SIZE];

// 最小过桥时间总和,初始值100;每个人过桥所需要的时间

int MinTime=100, Time[N]={1, 3, 6, 8, 12};

// 寻找最佳过桥方案。Remnant:未过桥人数; CurTime:当前已用时间;

// Direction:过桥方向,1--向右,0--向左

void Find(int Remnant, int CurTime, int Direction) {

if(Remnant == 0) {                               // 所有人已经过桥,更新最少时间及方案

MinTime=CurTime;

for(int i=0; i<SIZE && TmpScheme>=0; i++)

Scheme = TmpScheme;

} else if(Direction == 1) {                        // 过桥方向向右,从桥左侧选出两人过桥

for(int i=0; i<N; i++)

if(Position == 0 && CurTime + Time < MinTime) {

TmpScheme[Index++] = i;

Position = 1;

for(int j=0; j<N; j++) {

int TmpMax = (Time > Time[j] ? Time : Time[j]);

if(Position[j] == 0 && CurTime + TmpMax < MinTime) {

TmpScheme[Index++] = j;

Position[j] = 1;

Find(Remnant - 2, CurTime + TmpMax, !Direction);

Position[j] = 0;

TmpScheme[--Index] = -1;

}

}

Position = 0;

TmpScheme[--Index] = -1;

}

} else {        // 过桥方向向左,从桥右侧选出一个人回来送灯

for(int j=0; j<N; j++) {

if(Position[j] == 1 && CurTime+Time[j] < MinTime) {

TmpScheme[Index++] = j;

Position[j] = 0;

Find(Remnant+1, CurTime+Time[j], !Direction);

Position[j] = 1;

TmpScheme[--Index] = -1;

}

}

}

}

int main(int argc, char* argv[]) {

for(int i=0; i<SIZE; i++)   // 初始方案内容为负值,避免和人员标号冲突

Scheme = TmpScheme = -1;

Find(N, 0, 1);        // 查找最佳方案

printf("MinTime=%d:", MinTime); // 输出最佳方案

for(int i=0; i<SIZE && Scheme>=0; i+=3)

printf("  %d-%d  %d", Scheme, Scheme[i+1], Scheme[i+2]);

printf("\b\b  ");

}

16、2005年11月金山笔试题。编码完成下面的处理函数。函数将字符串中的字符‘*‘移到串的前部分,前面的非‘*‘字符后移,但不能改变非‘*‘字符的先后顺序,函数返回串中字符‘*‘的数量。如原始串为:ab**cd**e*12,处理后为*****abcde12,函数并返回值为5。(要求使用尽量少的时间和辅助空间)

int change(char *str) {

int count = 0;

for(int i=0, j=0; str; i++) {

if(str==‘*‘) {

for(j=i-1; str[j]!=‘*‘&&j>=0; j--)

str[j+1]=str[j];

str[j+1] = ‘*‘;

count++;

}

}

return count;

}

int main(int argc, char* argv[]) {

char str[] = "ab**cd**e*12";

printf("str1=%s\n", str);

printf("str2=%s, count=%d", str, change(str));

}

// 终于得到一个比较高效的算法,一个网友提供,估计应该和金山面试官的想法一致。算法如下:

int change(char *str) {

int i,j=strlen(str)-1;

for(i=j; j>=0; j--) {

if(str!=‘*‘) {

i--;

} else if(str[j]!=‘*‘) {

str = str[j];

str[j] = ‘*‘;

i--;

}

}

return i+1;

}

17、2005年11月15日华为软件研发笔试题。实现一单链表的逆转。

#include "stdafx.h"

typedef char eleType;  // 定义链表中的数据类型

typedef struct listnode  { // 定义单链表结构

eleType data;

struct listnode *next;

}node;

node *create(int n) {  // 创建单链表,n为节点个数

node *p = (node *)malloc(sizeof(node));

node *head = p;  head->data = ‘A‘;

for(int i=‘B‘; i<‘A‘+n; i++) {

p = (p->next = (node *)malloc(sizeof(node)));

p->data = i;

p->next = NULL;

}

return head;

}

void print(node *head) { // 按链表顺序输出链表中元素

for(; head; head = head->next)

printf("%c ", head->data);

printf("\n");

}

node *reverse(node *head, node *pre) { // 逆转单链表函数。这是笔试时需要写的最主要函数

node *p=head->next;

head->next = pre;

if(p) return reverse(p, head);

else  return head;

}

int main(int argc, char* argv[]) {

node *head = create(6);

print(head);

head = reverse(head, NULL);

print(head);

}

18、编码实现字符串转整型的函数(实现函数atoi的功能),据说是神州数码笔试题。如将字符串 ”+123”?123, ”-0123”?-123, “123CS45”?123, “123.45CS”?123, “CS123.45”?0

#include "stdafx.h"

int str2int(const char *str) {    // 字符串转整型函数

int i=0, sign=1, value = 0;

if(str==NULL)  return NULL;    // 空串直接返回 NULL

if(str[0]==‘-‘ || str[0]==‘+‘) {   // 判断是否存在符号位

i = 1;

sign = (str[0]==‘-‘ ? -1 : 1);

}

for(; str>=‘0‘ && str<=‘9‘; i++) // 如果是数字,则继续转换

value = value * 10 + (str - ‘0‘);

return sign * value;

}

int main(int argc, char *argv[]) {

char *str = "-123.45CS67";

int  val  = str2int(str);

printf("str=%s\tval=%d\n", str, val);

}

19、歌德巴赫猜想。任何一个偶数都可以分解为两个素数之和。(其实这是个C二级考试的模拟试题)

#include "stdafx.h"

#include "math.h"

int main(int argc, char* argv[]) {

int Even=78, Prime1, Prime2, Tmp1, Tmp2;

for(Prime1=3; Prime1<=Even/2; Prime1+=2) {

for(Tmp1=2,Tmp2=sqrt(float(Prime1)); Tmp1<=Tmp2 && Prime1%Tmp1 != 0; Tmp1++);

if(Tmp1<=Tmp2) continue;

Prime2 = Even-Prime1;

for(Tmp1=2,Tmp2=sqrt(float(Prime2)); Tmp1<=Tmp2 && Prime2%Tmp1 != 0; Tmp1++);

if(Tmp1<=Tmp2) continue;

printf("%d=%d+%d\n", Even, Prime1, Prime2);

}

}

20、快速排序(东软喜欢考类似的算法填空题,又如堆排序的算法等)

#include "stdafx.h"

#define N 10

int part(int list[], int low, int high) {  // 一趟排序,返回分割点位置

int tmp = list[low];

while(low<high) {

while(low<high && list[high]>=tmp) --high;

list[low] = list[high];

while(low<high && list[low]<=tmp)  ++low;

list[high] = list[low];

}

list[low] = tmp;

return low;

}

void QSort(int list[], int low, int high) { // 应用递归进行快速排序

if(low<high) {

int mid = part(list, low, high);

QSort(list, low, mid-1);

QSort(list, mid+1, high);

}

}

void show(int list[], int n) {    // 输出列表中元素

for(int i=0; i<n; i++)

printf("%d ", list);

printf("\n");

}

int main(int argc, char* argv[]) {

int list[N] = {23, 65, 26, 1, 6, 89, 3, 12, 33, 8};

show(list, N);      // 输出排序前序列

QSort(list, 0, N-1);     // 快速排序

show(list, N);      // 输出排序后序列

}

21、2005年11月23日慧通笔试题:写一函数判断某个整数是否为回文数,如12321为回文数。可以用判断入栈和出栈是否相同来实现(略微复杂些),这里是将整数逆序后形成另一整数,判断两个整数是否相等来实现的。

#include "stdafx.h"

int IsEchoNum(int num) {

int tmp = 0;

for(int n = num; n; n/=10)

tmp = tmp *10 + n%10;

return tmp==num;

}

int main(int argc, char* argv[]) {

int num = 12321;

printf("%d  %d\n", num, IsEchoNum(num));

}

22、删除字符串中的数字并压缩字符串(神州数码以前笔试题),如字符串”abc123de4fg56”处理后变为”abcdefg”。注意空间和效率。(下面的算法只需要一次遍历,不需要开辟新空间,时间复杂度为O(N))

#include "stdafx.h"

void delNum(char *str) {

int i, j=0;

// 找到串中第一个数字的位子

for(i=j=0; str && (str<‘0‘ || str>‘9‘); j=++i);

// 从串中第一个数字的位置开始,逐个放入后面的非数字字符

for(; str; i++)

if(str<‘0‘ || str>‘9‘)

str[j++] = str;

str[j] = ‘\0‘;

}

int main(int argc, char* argv[]) {

char str[] = "abc123ef4g4h5";

printf("%s\n", str);

delNum(str);

printf("%s\n", str);

}

23、求两个串中的第一个最长子串(神州数码以前试题)。如"abractyeyt","dgdsaeactyey"的最大子串为"actyet"。

#include "stdafx.h"

char *MaxSubString(char *str1, char *str2) {

int i, j, k, index, max=0;

for(i=0; str1; i++)

for(j=0; str2[j]; j++) {

for(k=0; str1[i+k]==str2[j+k] && (str2[i+k] || str1[i+k]); k++);

if(k>max) {  // 出现大于当前子串长度的子串,则替换子串位置和程度

index = j; max = k;

}

}

char *strResult = (char *)calloc(sizeof(char), max+1);

for(i=0; i<max; i++)

strResult = str2[index++];

return strResult;

}

int main(int argc, char* argv[]) {

char str1[] = "abractyeyt", str2[] = "dgdsaeactyey";

char *strResult = MaxSubString(str1, str2);

printf("str1=%s\nstr2=%s\nMaxSubString=%s\n", str1, str2, strResult);

}

24、不开辟用于交换数据的临时空间,如何完成字符串的逆序(在技术一轮面试中,有些面试官会这样问)

#include "stdafx.h"

void change(char *str) {

for(int i=0,j=strlen(str)-1; i<j; i++, j--){

str ^= str[j] ^= str ^= str[j];

}

}

int main(int argc, char* argv[]) {

char str[] = "abcdefg";

printf("strSource=%s\n", str);

change(str);

printf("strResult=%s\n", str);

return getchar();

}

25、删除串中指定的字符(做此题时,千万不要开辟新空间,否则面试官可能认为你不适合做嵌入式开发)

#include "stdafx.h"

void delChar(char *str, char c) {

int i, j=0;

for(i=0; str; i++)

if(str!=c) str[j++]=str;

str[j] = ‘\0‘;

}

int main(int argc, char* argv[]) {

char str[] = "abcdefgh"; // 注意,此处不能写成char *str = "abcdefgh";

printf("%s\n", str);

delChar(str, ‘c‘);

printf("%s\n", str);

}

26、判断单链表中是否存在环(网上说的笔试题)

#include "stdafx.h"

typedef char eleType;    // 定义链表中的数据类型

typedef struct listnode  {   // 定义单链表结构

eleType data;

struct listnode *next;

}node;

node *create(int n) {    // 创建单链表,n为节点个数

node *p = (node *)malloc(sizeof(node));

node *head = p;  head->data = ‘A‘;

for(int i=‘B‘; i<‘A‘+n; i++) {

p = (p->next = (node *)malloc(sizeof(node)));

p->data = i;

p->next = NULL;

}

return head;

}

void addCircle(node *head, int n) { // 增加环,将链尾指向链中第n个节点

node *q, *p = head;

for(int i=1; p->next; i++) {

if(i==n) q = p;

p = p->next;

}

p->next = q;

}

int isCircle(node *head) {   // 这是笔试时需要写的最主要函数,其他函数可以不写

node *p=head,*q=head;

while( p->next && q->next) {

p = p->next;

if (NULL == (q=q->next->next)) return 0;

if (p == q) return 1;

}

return 0;

}

int main(int argc, char* argv[]) {

node *head = create(12);

addCircle(head, 8);   // 注释掉此行,连表就没有环了

printf("%d\n", isCircle(head));

}

 

时间: 2024-10-09 06:52:50

算法题库的相关文章

算法面试课程笔记000 玩转算法面试 leetcode题库分门别类详细解析

算法面试课程笔记 =============================================================================== 本文地址 : =============================================================================== liuyubobobo老师 <<玩转算法面试 leetcode题库分门别类详细解析>> 为了面试,更为了提升你的算法思维 http:/

《算法竞赛入门经典——训练指南》第二章题库

UVa特别题库 UVa网站专门为本书设立的分类题库配合,方便读者提交: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=442 注意,下面注有"extra"的习题并没有在书中出现,但在上面的特别题库中有,属于附加习题. 基础练习 (Basic Problems) UVa11388 GCD LCM UVa11889 Benefit UVa10943 How do y

北大ACM题库习题分类与简介(转载)

在百度文库上找到的,不知是哪位大牛整理的,真的很不错! zz题 目分类 Posted by fishhead at 2007-01-13 12:44:58.0 -------------------------------------------------------------------------------- acm.pku.edu.cn 1. 排序 1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1840, 2201, 2376, 23

NOI题库 1768最大子矩阵 题解

NOI题库 1768最大子矩阵  题解 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的矩阵 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 的最大子矩阵是 9 2 -4 1 -1 8 这个子矩阵的大小是15. 输入   输入是一个N * N的矩阵.输入的第一行给出N (0 < N <= 100).再后面的若干行中,依

重开吐槽有感及OI书籍题库推荐 -自己选的路 跪着也要走完

凉爽的清风伴随着烈日洒向这片土地,山区的夏天似乎早已来到.回想过去的高一上学期与寒假,不禁叹息,荒废了多少时光.虽然自称为OIer,但却是个半吊子,在过去的NOIP2015中,从零开始的我,刚上完三四节课的我就裸考了笔试,差0.5分与复赛失之交臂.再见了2015的比赛,考试过后,感觉OI没什么用处,有荒废了许多,竞赛班由次居然连续3个星期都没开过课,也就是1月1课.可能是不重视吧,在2015noip中,我校复赛才入几个人,学长得了奖,最高的也还是省二.应该算是弱校了吧.不由地怀疑自己. OI课上

Android开发实例-自动生成题库的数独(一)

转载请注明出处:http://blog.csdn.net/einarzhang/article/details/44834259 本系列文章主要介绍如何利用Android开发一个自动生成题目的数独游戏.涉及的知识和技术如下所示: 挖洞算法自动生成数独题目 实现自定义View用于绘制数独盘 数据库的基本操作 看着市场上千篇一律的数独应用,他们大都来自于同一个开源应用,题目都是固定不变的那么100多道.我们就没有方法改变数独题目吗?经过百度搜索,终于找到了一篇自动生成数独题库的算法,感谢原作者的理论

笔试算法题

转自:http://www.cnblogs.com/xwdreamer/archive/2011/12/13/2296910.html 1.把二元查找树转变成排序的双向链表 题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表.要求不能创建任何新的结点,只调整指针的指向.   10  / \  6  14 / \ / \4  8 12 16 转换成双向链表4=6=8=10=12=14=16.  首先我们定义的二元查找树 节点的数据结构如下: struct BSTreeNode{  i

OnlineJudge 离线题库采集

过段时间要把以前的OJ换掉,我负责VirtualJudge的部分.需要用C与PHP写一个Linux下的VJudge. 在此之前,将以前写给自己学弟学妹用的OJ离线题库的采集程序改进了一下.支持国内一些知名高校的OJ,为之后VJudge的开发练练手,熟悉下各个OJ的结构,免去以后再在LINUX上进行一些繁琐的测试. 题目的采集没有使用任何OJ的API,直接采取从HTML页面采集数据并处理的方式.下载HTTP文件使用的是WinINet函数集,用起来比CURL还方便.正则表达式使用的ATL库里的reg

每天刷个算法题20160521:二叉树高度(递归与非递归)

版权所有.所有权利保留. 欢迎转载,转载时请注明出处: http://blog.csdn.net/xiaofei_it/article/details/51502727 为了防止思维僵化,每天刷个算法题.已经刷了几天了,现在发点代码. 我已经建了一个开源项目,每天的题目都在里面: https://github.com/Xiaofei-it/Algorithms 绝大部分算法都是我自己写的,没有参考网上通用代码.读者可能会觉得有的代码晦涩难懂,因为那是我自己的理解. 最近几天都是在写一些原来的东西