Bayesian Face Revisited A Joint Formulation

很有意思的一篇人脸识别算法文章,人家写的太好,就不好意思写了,收集了一些资料,包括了原理介绍,流程图,项目网址和作者主页信息等。

参考资料:

[1]. http://blog.csdn.net/csyhhb/article/details/46300001(原理介绍)

[2]. http://blog.csdn.net/hqbupt/article/details/37758627(流程图)

[3]. http://home.ustc.edu.cn/~chendong/(作者主页)

[4]. http://home.ustc.edu.cn/~chendong/JointBayesian/index.html(项目网址)

时间: 2024-12-15 17:16:18

Bayesian Face Revisited A Joint Formulation的相关文章

人脸验证算法Joint Bayesian详解及实现(Python版)

人脸验证算法Joint Bayesian详解及实现(Python版) Tags: JointBayesian DeepLearning Python 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如对代码有兴趣的请移步我的 Github. 如需转载,请附上本文链接,不甚感激!  http://blog.csdn.net/cyh_24/article/details/49059475 Bayesian Face Revis

人脸识别(face recognition)

一.前述 1. 发展 以往的人脸识别主要是包括人脸图像采集.人脸识别预处理.身份确认.身份查找等技术和系统.现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测.行人跟踪.甚至到了动态物体的跟踪.由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理.而且算法已经由以前的Adaboots.PCA等传统的统计学方法转变为CNN.RCNN等深度学习及其变形的方法.现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界.工业界和国家的支持. 之后的内容主要参考了下面的链接,

Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood

Abstract Bayesian networks are a powerful probabilistic representation, and their use for classification has received considerable attention. However, they tend to perform poorly when learned in the standard way. This is attributable to a mismatch be

IEEE IA

第12期 - 12月(第38卷) A Model Selection Approach for Clustering a Multinomial Sequence with Non-Negative FactorizationN.H. Lee, R. Tang, C.E. Priebe, and M. Rosen ............................................................................................

Automatic Generation of Animated GIFs from Video论文研读及实现

论文地址:Video2GIF: Automatic Generation of Animated GIFs from Video 视频的结构化分析是视频理解相关工作的关键.虽然本文是生成gif图,但是其中对场景RankNet思想值得研究. 文中的视频特征表示也是一个视频处理值得学习的点.以前做的视频都是基于单frame,没有考虑到时空域,文中的参考文献也值得研读一下. 以下是对本文的研读,英语水平有限,有些点不知道用汉语怎么解释,直接用的英语应该更容易理解一些. Abstract 从源视频当中提

pgm_Bayesian_Network_fundamentals

A Bayesian network is : a)  A directed acyclic graph (DAG) G, which nodes represent the variables X1,...,Xn. (有向无环图,每个结点表示变量) b)  for each node Xi, a CPD P(Xi|ParG(Xi)) is assigned. ParG(Xi) 表示 图中Xi 的双亲结点.  CPD: Conditional Probability Distribution:但

Bayesian machine learning

from: http://www.metacademy.org/roadmaps/rgrosse/bayesian_machine_learning Created by: Roger Grosse(http://www.cs.toronto.edu/~rgrosse/) Intended for: beginning machine learning researchers, practitioners Bayesian statistics is a branch of statistics

PGM学习之六 从有向无环图(DAG)到贝叶斯网络(Bayesian Networks)

本文的目的是记录一些在学习贝叶斯网络(Bayesian Networks)过程中遇到的基本问题.主要包括有向无环图(DAG),I-Maps,分解(Factorization),有向分割(d-Separation),最小I-Maps(Minimal I-Maps)等.主要参考Nir Friedman的相关PPT. 1  概率分布(Probability Distributions) 令X1,...,Xn表示随机变量:令P是X1,...,Xn的联合分布(joint distribution).如果每

Computational Methods in Bayesian Analysis

Computational Methods in Bayesian Analysis Computational Methods in Bayesian Analysis [Markov chain Monte Carlo][Gibbs Sampling][The Metropolis-Hastings Algorithm][Random-walk Metropolis-Hastings][Adaptive Metropolis] About the author This notebook w