《数据挖掘R语言实战》图书介绍,数据挖掘相关人员看过来!

今天介绍一本书《数据挖掘R语言实战》。数据挖掘技术是当下大数据时代最关键的技术,其应用领域及前景不可估量。R是一款极其优秀的统计分析和数据挖掘软件,R语言的特点是入门容易,使用简单。

这本书侧重使用R进行数据挖掘,重点进述了R的数据挖掘流程、算法包的使用及相关工具的应用,同时结合大量精选的数据挖掘实例对R软件进行深入潜出和全面的介绍,以便读者能深刻理解R的精髓并能快速、高效和灵活地掌握使用R进行数据挖掘的技巧。

本书以数据预处理、基本算法及应用和高级算法及应用这三篇展示。

(1)上篇:数据预处理

由第1-5章组成,首先简要介绍数据挖掘流程、算法和工具,然后介绍R中的数据分类和数据集,以及使用R获取数据的多种灵活的方法。最后讲述对数据进行探索性分析和预处理的方法。这些内容是使用R进行数据挖掘的最基础内容。

(2)中篇:基本算法及应用

由第6-9章组成,主要讲述数据挖掘的基本算法及应用,包括关联分析、聚类分析、判别分析和决策树,这些算法也是数据挖掘使用最多最普遍的算法。R中提供了丰富的、功能强大的算法包和实现函数,数据挖掘的初级和中级用户务必掌握。

(3)下篇:高级算法及应用

由第10-14章组成,主要讲述数据挖掘的高级算法及应用,包括集成学习、随机森林、支持向量机和神经网络,以及使用R中的工具对数据挖掘的模型进行评估与选择。

通过本书,您不仅能掌握使用R及相关的算法包来快速来快速解决实际问题的方法,而且能得到从实际问题分析入手,到利用R进行求解,以及对挖掘结果进行分析的全面训练。

本书适用于计算机、互联网、机器学习、信息、数学、经济金融、管理、运筹、统计以及有关理工科专业的本科生、研究生使用,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。

关注我们,将赠送本书电子版。私聊吧!

原文地址:http://blog.51cto.com/tcit1987/2061933

时间: 2024-10-06 14:15:52

《数据挖掘R语言实战》图书介绍,数据挖掘相关人员看过来!的相关文章

《数据挖掘:R语言实战》

<数据挖掘:R语言实战> 基本信息 作者: 黄文    王正林 丛书名: 大数据时代的R语言 出版社:电子工业出版社 ISBN:9787121231223 上架时间:2014-6-6 出版日期:2014 年6月 开本:16开 页码:292 版次:1-1 所属分类:计算机 > 软件与程序设计 > 综合 > 高级程序语言设计 更多关于>>><数据挖掘:R语言实战> 内容简介 书籍 计算机书籍 数据挖掘技术是当下大数据时代最关键的技术,其应用领域及前景

《R语言实战》(中文完整版)pdf

下载地址:网盘下载 基本介绍 编辑 原作名: R in Action[2] 作者: Robert I. Kabacoff 译者: 高涛 / 肖楠 / 陈钢 出版社: 人民邮电出版社 出版年: 2013-1 页数: 388 定价: 79.00元 装帧: 平装 ISBN: 978-711-529-990-1 内容简介 编辑 数据时代已经到来,但数据分析.数据挖掘人才却十分短缺.由于"大数据"对每个领域的决定性影响,相对于经验和直觉,在商业.经济及其他领域中基于数据和分析去发现问题并作出科学

《R语言实战》学习笔记fourth

又拖了好久继续写R 语言的学习笔记了啊 这次到了基本数据管理了,众所周知数据准备是数据分析的最重要的前提 书本是从一个例子开始本章的内容的,例子是一个类似调查问卷的 然后把回答标为从1到5,再进行分析(这让我想到了自学SPSS 的时候啊) > manager <- c(1, 2, 3, 4, 5) > date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08&q

R语言实战(中文完整版)pdf

下载地址:网盘下载 内容简介  · · · · · · 数据时代已经到来,但数据分析.数据挖掘人才却十分短缺.由于"大数据"对每个领域的决定性影响, 相对于经验和直觉,在商业.经济及其他领域中基于数据和分析去发现问题并作出科学.客观的决策越来越重要.开源软件R是世界上最流行的数据分析.统计计算及制图语言,几乎能够完成任何数据处理任务,可安装并运行于所有主流平台,为我们提供了成千上万的专业模块和实用工具,是从大数据中获取有用信息的绝佳工具. 本书从解决实际问题入手,尽量跳脱统计学的理论阐

R语言实战(四)回归

本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个

大数据分析学习之使用R语言实战机器学习视频课程

大数据分析学习之使用R语言实战机器学习网盘地址:https://pan.baidu.com/s/1Yi9H6s8Eypg_jJJlQmdFSg 密码:0jz3备用地址(腾讯微云):https://share.weiyun.com/5tk6j1Z 密码:rdia9t 机器学习的核心主要侧重于找出复杂数据的意义.这是一个应用广泛的任务,机器学习的使用是非常广泛的. 本课程主要分为两个阶段,第一个部分:掌握R语言的处理数据的基本语法.第二部分:介绍机器学习原理,并通过大量的案例,为学员介绍R语言通过机

R电子书资料《学习R》+《R语言实战第2版》+《R数据科学》学习推荐

如果没有任何编程基础,想学习如何使用R,并进行练习,建议大家看看<学习R>电子书和代码资料,上半部分主要介绍R的技术细节和使用技巧,下半部分更侧重实践,展示了从输入数据到发布结果这一标准的数据分析流程. <学习R>电子书,帮助学习编写简单的R程序,知道R语言能做什么: 1.使用向量.数组.列表.数据框和字符串等数据类型 2.掌握条件语句以及分支和循环控制语句 3.应用R的扩展包,将你自己的工作成果打包发给其他人 4.清理从各种来源导入的数据 5.通过可视化和汇总统计理解数据 6.使

R语言实战(五)方差分析与功效分析

本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析

下载零基础数据分析与挖掘R语言实战课程(R语言)

随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析,挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况可见一斑.于是善于学习的程序员们开始了R语言的学习之旅.对于有其他语言背景的程序员来说,学习R的语法小菜一碟,因为它的语法的确太简单了,甚至有的同学说1周就能掌握R语言,的确如此.但是之后呢?……好像进行不下去了!死记硬背记住了两个分析模型却不明其意,输出结果如同天书不会解读,各种参数全部使用缺省值,