从JDK源码学习Arraylist

从今天开始从源码去学习一些Java的常用数据结构,打好基础:)

Arraylist源码阅读:

jdk版本:1.8.0

首先看其构造方法:

构造方法一:

第一种支持初始化容量大小,其中声明一个对象数组,赋值给this.elementdata

构造方法二:

第二种无参构造函数,即不指定初始容量大小,则默认赋值this.elementdata为一个空的对象数组,但是由注释可以看到其无参构造实际上初始容量为10

在elementData的注释中也说了该变量是实际存储Arrylist数据的存储结构,任何空的arraylist,当第一次被调用add放进元素时,将会扩充容量为default_capacity也就是10

看看其add方法,因为arraylist也是有序的,因此加入的元素在列表尾部,在添加元素之前,调用ensureCapacityInternal,确保内部容量大小

在ensureCapacityInternal中将判断当前的elementdata的值是否为空数组,若为空则赋值minCapacity为默认容量和入口参数minCapacity的较大值,然后进一步调用ensureExplicitCapacity明确容量大小

在ensureExplicitCapacity中,modCount自增,判断当前最小容量和arraylist的实际元素个数差值若大于零,则调用grow函数来进行实际的容量扩充

扩容函数grow先取到当前arraylist的实际长度,然后将其扩大1.5倍,然后判断该值和最小容量的大小,若扩充1.5倍小于所需要的最小容量,则赋值新的容量为需要的最小容量,此时并判断是否产生溢出情况,也就是注释里面的overflow conscious mode的含义,所以arraylist不是无限扩容,看下其max_array_size的值

数组最大值为integer.max_value-8,也就是2的31次-1-8

至于为什么要-8,这里有些vm要存储其最大值的大小需要八个字节,如下图所示

如果扩充的新容量比max还大,则调用hugeCapacity,判断最小的容量和2的31次-1的大小,若大于则赋值max_value,否则说明此时最小容量介于max_value-8和max_value之间,则赋值为max_value-8

然后调用Array.copyof将旧的arraylist中的值拷贝到新的扩充后的arraylist中,所以默认空数组的add操作后容量即为10

构造方法三:

可以传递任何实现了Collection接口的类,其调用collection的toarray方法返回一个对象数组,也就是将集合中的元素以对象数组形式返回,toarray的注释里也说明了这个方法是array和collection的桥梁

为了防止重写toArray方法返回的并不是对象数组,因此这里判断一下elementData的类是否是对象数组,如果不是的话,则将element中的数组copy到对象数组中

比如有MySubClass是MyClass的子类。
Collection<MyClass> myCollection;  //myCollection里有很多元素。
Collection<MySubClass> mySubCollection;  //mySubCollection里有很多元素。
ArrayList<MyClass> myList = new ArrayList<MyClass>(myCollection);
也可以:
ArrayList<MyClass> myList = new ArrayList<MyClass>(mySubCollection);

意思就是这里用extends e,来指定定义一个父类的arraylist,则其所有子类的集合都能放进该父类的arraylist,从而编译器才能够知道放入的元素都是满足?也就是,初始定义arraylist的类型声明

关于线程安全:

上面遗留了一个modcount++的自增操作的解释,看一下jdk对modcount的解释

该参数是对arraylist容量大小修改的次数,也就是删减元素改变大小时可能会使正常的迭代过程出现错误,那么针对单线程而言,不存在又读又写,但在多线程情况下,可能存在读写同时进行的操作,参考知乎一个很精简明确的答案,看完真的是一目了然,如果结构发生变化则抛出ConcurrentModificationException

通过调用上面这个方法来判断是否结构发生变化,调用add remove时都将修改modcount,通过迭代时先保存一份modcount,若迭代过程中再取modcount和保存的值不等则抛出异常

总结:

①.初始不指定容量时设置为10

②.每次扩充为实际长度的1.5倍与所需最小容量比较

③.arraylist是非线程安全的

④.其最大值为2的31次-1

⑤.为避免连续扩容消耗内存,能初始化容量大小尽量指定容量

⑥.为啥会非线程安全,因为方法内部并非原子操作

参考:

https://zhuanlan.zhihu.com/p/72296421  hashmap

https://zhuanlan.zhihu.com/p/73283922  linkedhashmap

https://zhuanlan.zhihu.com/p/72463637 hashset

https://zhuanlan.zhihu.com/p/72156592 arraylist

https://www.jianshu.com/p/f174d49b391c

https://www.cnblogs.com/LiaHon/p/11089988.html

https://blog.csdn.net/u012859681/article/details/78206494 线程安全问题

原文地址:https://www.cnblogs.com/tr1ple/p/12662603.html

时间: 2024-10-30 21:36:32

从JDK源码学习Arraylist的相关文章

JDK源码学习----ArrayList

                                                                         JDK源码学习----ArrayList 1.ArrayList简介 ArrayList是基于Object[] 数组的,也就是我们常说的动态数组.它能很方便的实现数组的增加删除等操作. public class ArrayList<E> extends AbstractList<E> implements List<E>, R

由JDK源码学习ArrayList

ArrayList是实现了List接口的动态数组.与java中的数组相比,它的容量能动态增长.ArrayList的三大特点: ① 底层采用数组结构 ② 有序 ③ 非同步 下面我们从ArrayList的增加元素.获取元素.删除元素三个方面来学习ArrayList. ArrayList添加元素 因为ArrayList是采用数组实现的,其源代码比较简单.首先我们来看ArrayList的add(E e).以下代码版本是jdk7. public boolean add(E e) { // 检查数组容量 e

JDK源码学习系列06----Vector

                                            JDK源码学习系列06----Vector 1.Vector简介 Vector的内部是数组实现的,它和ArrayList非常相似,最大的不同就是 Vector 是线程安全(同步)的. public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.S

JDK源码学习系列07----Stack

                                                               JDK源码学习系列07----Stack 1.Stack源码非常简单 package java.util; public class Stack<E> extends Vector<E> { // 版本ID.这个用于版本升级控制,这里不须理会! private static final long serialVersionUID = 122446316454

JDK源码学习--String篇(二) 关于String采用final修饰的思考

JDK源码学习String篇中,有一处错误,String类用final[不能被改变的]修饰,而我却写成静态的,感谢CTO-淼淼的指正. 风一样的码农提出的String为何采用final的设计,阅读JDK源码的时候,有粗略的思考过,今天下班后又把<Thinking in Java>中关于final的内容重新看了一遍,对此写下一些关于自己的理解和想法. String类中final关键字的使用 final关键字,用来描述一块数据不能被改变,两种可能理由:设计.效率 final使用的三种情况:数据.方

JDK源码学习系列08----HashMap

                                                          JDK源码学习系列08----HashMap 1.HashMap简介 HashMap 是一个散列表,它存储的内容是键值对(key-value)映射. HashMap 继承于AbstractMap,实现了Map.Cloneable.java.io.Serializable接口. HashMap 的实现不是同步的,这意味着它不是线程安全的.它的key.value都可以为null.此外,

JDK源码学习LinkedList

LinkedList是List接口的子类,它底层数据结构是双向循环链表.LinkedList还实现了Deque接口(double-end-queue双端队列,线性collection,支持在两端插入和移除元素).所以LinkedList既可以被当作双向链表,还可以当做栈.队列或双端队列进行操作.文章目录如下: 1.LinkedList的存储实现(jdk 1.7.0_51) 2.LinkedList的读取实现 3.LinkedList的性能分析 下面我们进入正题,开始学习LinkedList. L

JDK源码学习09----HashTable

                                                         JDK源码学习09----HashTable 1.HashTable简介 Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射. Hashtable 继承于Dictionary,实现了Map.Cloneable.java.io.Serializable接口. Hashtable 的函数都是同步的,这意味着它是线程安全的.它的key.value都不可以为n

JDK源码学习系列05----LinkedList

                                         JDK源码学习系列05----LinkedList 1.LinkedList简介 LinkedList是基于双向链表实现的,它也可以被当作堆栈.队列或双端队列进行操作. public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, jav