python常见面试算法

一、冒泡排序

‘‘‘冒泡排序‘‘‘
# coding:utf-8
list = [1, 13, 5, 35, 6, 9, 10]
s = range(len(list))[::-1]
print(s)
for i in s:
for j in range(i):
if list[j] > list[j +1 ]:
list[j], list[j + 1] = list[j + 1], list[j]
print(list)

原文地址:https://www.cnblogs.com/queenz-852/p/12408607.html

时间: 2024-10-15 04:44:03

python常见面试算法的相关文章

Python常见排序算法解析

概述 十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序. 线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序. 基础定义 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面. 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面. 时间复杂度:对排序数据的总的操作次数.

RF、GBDT、XGBOOST常见面试算法整理

1.  RF(随机森林)与GBDT之间的区别 相同点: 1)都是由多棵树组成的 2)最终的结果都是由多棵树一起决定 不同点: 1)  组成随机森林的树可以是分类树也可以是回归树,而GBDT只由回归树组成 2)  组成随机森林的树可是并行生成,而GBDT只能是串行生成 3)  随机森林的结果是多棵树表决决定,而GBDT则是多棵树累加之和 4)  随机森林对异常值不敏感,而GBDT对异常值比较敏感 5)  随机森林是通过减少模型的方差来提高性能,而GBDT是减少模型的偏差来提高性能 6)  随机森林

大数据常见面试算法题复习

1.海量日志数据,提取出某日访问百度次数最多的那个IP. 解:ip个数是4个0到256的数字来表示.所以他是2^32个. 扫描一下日志:直接把所有第一个数字是n的放到一个文件n里面.这样我们有256个文件了. 对每一个小文件,他里面找到访问百度次数最多的ip(可以字典计数).然后得到256个ip.在256个ip里面找最大的.整体效率O(N) 2.假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个.一个查询串的重复度越高,说明查询它的用户越多,也就

【转】常见面试之机器学习算法思想简单梳理

转:http://www.chinakdd.com/article-oyU85v018dQL0Iu.html 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大. 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内

机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

http://www.cnblogs.com/tornadomeet/p/3395593.html 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大.

常见面试之机器学习算法思想简单梳理

http://www.cnblogs.com/tornadomeet/p/3395593.html (转) 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大. 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大

常见面试之机器学习算法思想简单梳理【转】

前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大. 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大点的公司里百度,阿里,腾讯,网易,搜狐,华为(华为的岗位基本都是随机分配,机器学习等岗位基本面向的是博士)等

如何用Python实现常见机器学习算法-1

最近在GitHub上学习了有关python实现常见机器学习算法 目录 一.线性回归 1.代价函数 2.梯度下降算法 3.均值归一化 4.最终运行结果 5.使用scikit-learn库中的线性模型实现 二.逻辑回归 1.代价函数 2.梯度 3.正则化 4.S型函数 5.映射为多项式 6.使用的优化方法 7.运行结果 8.使用scikit-learn库中的逻辑回归模型实现 逻辑回归_手写数字识别_OneVsAll 1.随机显示100个数字 2.OneVsAll 3.手写数字识别 4.预测 5.运行

《Python程序员面试算法宝典》PDF高清版

<Python程序员面试算法宝典>PDF高清版 链接: https://pan.baidu.com/s/1Rtvk_KCmdwvGliyq9Pg9OQ 提取码: i69a ? 内容简介  · · · · · · 本书是一本讲解程序员面试笔试算法的书,代码采用Python语言编写,书中除了讲解如何解答算法问题以外,还引入了例子辅以说明,让读者更容易理解. 本书几乎将程序员面试笔试过程中算法类真题一网打尽,在题目的广度上,通过各种渠道,搜集了近3年来几乎所有IT企业面试笔试算法的高频题目,所选择题