poj3585 Accumulation Degree(换根dp)

传送门

换根dp板子题(板子型选手

题意:

  一棵树确定源点和汇点找到最大的流量(拿出一整套最大瘤板子orz

const int maxn=2e5+10;
int head[maxn],tot;
struct node
{
    int nt,to;long long w;
}q[2*maxn];
long long dp[maxn];int cnt[maxn];
void insert(int u,int v,long long w)
{
    q[tot].nt=head[u];q[tot].w=w;q[tot].to=v;head[u]=tot++;
    q[tot].nt=head[v];q[tot].w=w;q[tot].to=u;head[v]=tot++;
}
long long ans;
void dfs(int u,int fa)
{
    //cout<<u<<endl;
    for(int i=head[u];i!=-1;i=q[i].nt){
        int v=q[i].to;long long w=q[i].w;
        if(v==fa)    continue;
        dfs(v,u);
        if(cnt[v]==1)
            dp[u]+=w;
        else
            dp[u]+=min(w,dp[v]);
        //cout<<u<<" "<<dp[u]<<endl;
    }
}
void dfs1(int u,int fa)
{
    //cout<<u<<" "<<dp[u]<<endl;
    ans=max(ans,dp[u]);
    for(int i=head[u];i!=-1;i=q[i].nt){
        int v=q[i].to;long long w=q[i].w;
        if(v==fa)    continue;
        dp[v]+=min(w,dp[u]-min(dp[v],w));
        dfs1(v,u);
    }
}
int main()
{
    int t;scanf("%d",&t);
    while(t--){
        int n;scanf("%d",&n);ans=0;
        for(int i=1;i<=n;i++)    head[i]=-1,cnt[i]=0,dp[i]=0;tot=0;
        for(int i=1;i<n;i++){
            int t1,t2;long long t3;scanf("%d%d%lld",&t1,&t2,&t3);
            insert(t1,t2,t3);cnt[t1]++;cnt[t2]++;
        }
        dfs(1,0);
        dfs1(1,0);
        cout<<ans<<endl;
    }
}

原文地址:https://www.cnblogs.com/r138155/p/12639253.html

时间: 2024-10-01 04:45:45

poj3585 Accumulation Degree(换根dp)的相关文章

题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)

写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换根法 作为一道不定根的树形DP,如果直接对每个点进行DP,可能时间会炸掉 但是,优秀的二次换根和扫描法可以再O(n^2)内解决问题. 二次扫描的含义:(来自lyd 算法竞赛进阶指南) 第一次扫描:任选一个节点为根节点(我会选1)在树上进行树形DP,在回溯时,从儿子节点向父节点(从底向上)进行状态转移

POJ3585 Accumulation Degree 【树形dp】

题目链接 POJ3585 题解 -二次扫描与换根法- 对于这样一个无根树的树形dp 我们先任选一根进行一次树形dp 然后再扫一遍通过计算得出每个点为根时的答案 #include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> #define LL long long int #define Redge(u) for (int k =

换根DP

换根dp的通法:1.第一次扫描时,任选一个点为根,在"有根树"上执行一次树形DP,也就在回溯时发生的,自底向上的状态转移. 2.第二次扫描时,从刚才选出的根出发,对整棵树执行一次dfs,在每次递归前进行自上向下的推导,计算出换根后的解. 1.POJ3585 Accumulation Degree dp[i]以i为根的子树中,把i作为源点的最大流量 转移\(dp[x]=\sum_{y\epsilon son(x)}^{}\left\{\begin{matrix} min(dp[y],le

换根dp「小奇的仓库&#183;randomwalking&#183;」

把以前考试换根题集中写一下 随便选一个点做根一遍$dfs$求子树内贡献,再通过特殊手段算$ans[1]$,最后$dfs$求其他$ans$ 拆成子树内,子树外分别算贡献差,得儿子是很常见套路了 小奇的仓库 $M<=15$ 题解 很久之前做的换根dp,当时觉得真是神仙,现在看还是觉得很神仙 不同于一般换根dp,这个题$n^2$并不好写 所以$n^2$算法就省略了 考虑$M$非常小,可以计算$M$对答案影响 一个直接的想法是先算出来原答案,再减去现在答案 //本来为j现在异或M,变化了j-delta

[POJ3585]Accumulation Degree

题面 \(\text{Solution:}\) 有些题目不仅让我们做树型 \(\text{dp}\) ,而且还让我们换每个根分别做一次, 然后这样就愉快的 \(\text{TLE}\) 了,所以我们要用一种方法快速知道所有根的答案. 二次扫描与换根法: 就是先选任意点作根做一遍 \(\text{dp}\) ,求出相关信息,然后再从根往下 \(\text{dfs}\) ,对每一个节点往下走之前进行自顶向下的推导,计算出 "换根" 后的解. 就这题而言就是用父亲的换根后的答案来跟新自己换根

【换根dp】9.22小偷

换根都不会了 题目大意 给定一棵$n$个点的树和树上一撮关键点,求到所有$m$个关键点距离的最大值$dis_{max}\le LIM$的点的个数. $n,m\le 30000,LIM\le 30000$ 题目分析 考虑在求出一个点的情况下如何转移到其子节点. 对点$u$最直接关心的状态是$mx[u]$:所有关键点到$u$的最大距离. 对点$u$的子节点$v$来说,$u$能带给它的只是“外面的世界”——$v$子树的补集这块贡献,也就是对于$u$的除了$v$子树的$mx[u]$. 因为$mx[u]$

codeforces1156D 0-1-Tree 换根dp

题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路:设$f[u]$为以1为根,自下而上到$u$的末节点是1的合法路径数量,$g[u]$代表以1为根,自下而上到$v$末节点是0的合法路径数量,这个可以通过一遍dfs简单求解. 再设$nf[u]$和$ng[u]$代表以u为根的两种合法路径数量,进行换根dfs,在换根的过程中: 若某一条边是0边,则: $ng[st.to]=

HDU 2196 Computer 二次扫描与换根DP

题意:给定一棵树,求树上所有点到其最远点的距离. 数据范围: 1 <= N <= 100000 ------------------------------------------我是分割线------------------------------------------ 题解:对于每个节点u来说,其可能到达的最长距离为max{其子树内的最长距离,其父节点不经过u的子树内的最长距离}.于是,我们便可以在第一遍dfs中预处理节点x到其子树内的最长距离,顺带求一下次长距离,方便转移. // f[

CodeForce - 1187 E. Tree Painting (换根dp)

You are given a tree (an undirected connected acyclic graph) consisting of nn vertices. You are playing a game on this tree. Initially all vertices are white. On the first turn of the game you choose one vertex and paint it black. Then on each turn y