SVM之问题形式化

SVM之对偶问题

SVM之核函数

SVM之解决线性不可分

写在SVM之前——凸优化与对偶问题

SVM内容繁多,打算用五篇文章来记述。SVM之问题形式化描述给出SVM的问题描述与基本模型;SVM之对偶问题将SVM求解转换为对偶问题的求解;SVM之核函数描述了SVM引人核函数进行特征向高维映射的过程;SVM之解决线性不可分描述了SVM对线性不可分数据的处理方法;另外,写在SVM之前——凸优化与对偶问题本身与SVM无关,但涉及了SVM优化问题求解的基础。需要注意的是:前三篇都是在数据线性可分的情况下进行的,第四篇才给出了解决线性不可分的方法;尽管如此,并不意味这第四篇完全脱离前三篇的整体内容,相反,SVM解决线性不可分方法的形式化描述与线性可分情况无多大差异,所以求解方法也是一样的。

一、线性分类器

对输入的$m$ 个训练样本${{\left\{ {{x}^{i}},{{y}^{i}} \right\}}_{i=1\cdots m}},{{x}^{i}}\in {{\Re }^{n}},{{y}^{i}}\in \{-1,1\}$ ,线性分类器希望找到一个超平面${{w}^{T}}x+b=0$ 将两类样本分开,使得对于样本类别${{y}^{i}}=1$ 的样本${{w}^{T}}{{x}^{i}}+b>0$ ;对于样本类别${{y}^{i}}=-1$的样本${{w}^{T}}{{x}^{i}}+b<0$。这样,超平面${{w}^{T}}x+b=0$便是一个“完美”的分类器。这个“完美”的分类器当然是很任性的,因为她要求数据是要线性可分的,不过在没有明确提出线性不可分的问题之前,暂且随着她的性子,假设数据和她一样“完美”吧!

二、函数间隔与几何间隔

在继续分类器之前,首先引人函数间隔和集合间隔两个概念。

对于线性函数$h(x)={{w}^{T}}x+b$ ,定义第$i$ 个样本到它的函数间隔为:\[{{\hat{\gamma }}^{i}}={{y}^{i}}({{w}^{T}}{{x}^{i}}+b)\]

函数间隔的意义不是很明确直观,但很容易发现它有一个性质:函数间隔随$(w,b)$ 的尺度成比例变换,也就是说如果令$({w}‘,{b}‘)=k(w,b)$ ,那么${{{\hat{\gamma }}‘}^{i}}={{y}^{i}}({{{w}‘}^{T}}{{x}^{i}}+{b}‘)=k{{\hat{\gamma }}^{i}}$。

另外,定义$m$ 个样本的集合的函数间隔为$\hat{\gamma }=\underset{x}{\mathop{\min }}\,{{\hat{\gamma }}^{i}}$ ,也就是所有样本中函数间隔最小的那个。

集合间隔的意义就明确很多了,就是样本到超平面${{w}^{T}}x+b=0$的几何距离。

点A坐标记为向量${{x}_{A}}$ ,它到平面${{w}^{T}}x+b=0$的投影为点B,点B坐标记为向量${{x}_{B}}$ 。那点A到平面${{w}^{T}}x+b=0$的距离为向量$\overset{\to }{\mathop{BA}}\,$ 的长度。另外平面${{w}^{T}}x+b=0$的单位化的法向量为$\frac{w}{\left\| w \right\|}$ ,所以向量$\overset{\to }{\mathop{BA}}\,$ 的可以表示为${{\gamma }^{A}}\frac{w}{\left\| w \right\|}$,其中${{\gamma }^{A}}$为向量$\overset{\to }{\mathop{BA}}\,$ 的长度,也是点A到平面${{w}^{T}}x+b=0$的几何距离。根据向量${{x}_{A}}$ 、${{x}_{B}}$ 以及 $\overset{\to }{\mathop{BA}}\,$的关系,可以得到${{x}_{B}}={{x}_{A}}-\overset{\to }{\mathop{BA}}\,={{x}_{A}}-\lambda \frac{w}{\left\| w \right\|}$ ,又由于 ${{x}_{B}}$在平面 ${{w}^{T}}x+b=0$上,所以  ${{w}^{T}}{{x}_{B}}+b=0$,俩式联立可以得到点A到平面${{w}^{T}}x+b=0$ 的几何距离为${{\gamma }^{A}}=\frac{1}{\left\| w \right\|}({{w}^{T}}x+b)$。

考虑到样本在平面两侧距离计算结果的正负性,样本$i$ 的几何间隔定义为:\[{{\gamma }^{i}}=\frac{1}{\left\| w \right\|}{{y}^{i}}({{w}^{T}}{{x}^{i}}+b)\]

显然,集合间隔和函数间隔满足:\[{{\gamma }^{i}}=\frac{{{{\hat{\gamma }}}^{i}}}{\left\| w \right\|}\]

同样,定义$m$ 个样本的集合到超平面${{w}^{T}}x+b=0$的集合间隔为\[\gamma =\underset{i}{\mathop{\min }}\,{{\gamma }^{i}}\]

三、最大间隔分类器

如果数据是线性可分的,那么一般存在多组$(w,b)$是的超平面${{w}^{T}}x+b=0$可以将数据正确分类,那么就需要一个标准来从中选取一个最优的。

最大间隔分类器以几何间隔为标准,从中选取离所有样本的集合的几何间隔最大的一个分类超平面作为最优分类超平面,也就是说,这样的超平面使得所有样本的集合到它的几何间隔$\gamma $ 最大化。而\[\gamma =\underset{i}{\mathop{\min }}\,{{\gamma }^{i}}\],换句话说,它在正确分类的前提下,要使得隔离它最近的样本尽可能的离它远,这样的分类平面将两类样本分的更开,保证了分类器更好的泛化性,因为如果分类超平面如果离某一类样本相对较近(就像第一幅图中三条黑线那样),那么分类器在这类样本附近就很可能对新的数据产生错分。可以直观看出,这样的分类超平面几何上大概是与两类样本的“边界”平行,穿过两类样本最中间的那条线,就像第二幅图中红线那样。

现在将思想形式化表示出来。首先,分类器必须对所有训练数据正确分类,也就是说所有样本到超平面几何间隔至少为$\gamma $,其次目标是要是这个其次最大化,这样就可以将其表示为以下优化问题:\[\begin{align}\left\{ \begin{matrix}\underset{w,b}{\mathop{\max }}\,\gamma   \\\begin{matrix}s.t. & \frac{1}{\left\| w \right\|}{{y}^{i}}({{w}^{T}}{{x}^{i}}+b)\ge \gamma   \\\end{matrix}  \\\end{matrix} \right.\end{align}\]

根据几何间隔和函数间隔的关系$\gamma =\frac{{\hat{\gamma }}}{\left\| w \right\|}$,上面优化问题可进一步改写为: \[\begin{align}\left\{ \begin{matrix}\underset{w,b}{\mathop{\max }}\,\frac{{\hat{\gamma }}}{\left\| w \right\|}  \\\begin{matrix}s.t. & {{y}^{i}}({{w}^{T}}{{x}^{i}}+b)\ge \hat{\gamma }  \\\end{matrix}  \\\end{matrix} \right.\end{align}\]

现在观察优化问题$\underset{w,b}{\mathop{\max }}\,\frac{{\hat{\gamma }}}{\left\| w \right\|}$,优化变量为$(w,b)$ ,目标函数为$\frac{{\hat{\gamma }}}{\left\| w \right\|}$,前文已经提到,函数间隔$\hat{\gamma }$ 随$(w,b)$ 的尺度成比例变换,那么现在优化目标函数$\frac{{\hat{\gamma }}}{\left\| w \right\|}$时,对优化变量$(w,b)$ 的任何尺度变换是没有意义的,并不会影响$\frac{{\hat{\gamma }}}{\left\| w \right\|}$的值。由于它们之间的这种关系,我们可以简化问题的求解,对$\hat{\gamma }$和$(w,b)$之一固定,去优化另一个(这个我的理解也比较模糊)。实事上,固定$\hat{\gamma }$会使问题变得更加简单,现在固定$\hat{\gamma }=1$(其他常数也可以),最大化$\frac{{\hat{\gamma }}}{\left\| w \right\|}$ 等价于最小化$\left\| w \right\|$ ,也等价于最小化$\frac{1}{2}{{\left\| w \right\|}^{2}}$ (这样转换是为了后面运算方便)上面的优化问题进一步化为:\[\begin{align}\left\{ \begin{matrix}\underset{w,b}{\mathop{\min }}\,\frac{1}{2}{{\left\| w \right\|}^{2}}  \\\begin{matrix}s.t. & {{y}^{i}}({{w}^{T}}{{x}^{i}}+b)\ge 1  \\\end{matrix}  \\\end{matrix} \right.\end{align}\]

现在,SVM的基础——最大间隔分类器就形式化为以上优化问题,而且不难发现它还是个凸优化问题,求解很方便。但是,我们并不直接求解这个问题,而是转而求解它的对偶问题,这我个人理解主要是因为转换后的对偶问题具有很好的形式,很容易引人核函数。关于对偶问题下一篇再写。

时间: 2024-10-13 11:33:38

SVM之问题形式化的相关文章

机器学习基石--学习笔记01--linear hard SVM

背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳.所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器.最近,台大林轩田老师在Coursera上的机器学习技法课程上有很详细的讲授SVM的原理,所以机会难得,一定要好好把握这次机会,将SVM背后的原理梳理清楚并记录下来.这篇文章总结第一讲linear hard SVM的相关内容. ? ? 最好的分割线 之前有讲过PLA,即在线性可分的数据中,找到一条线,能够区分开正负样本,如下所示: 上面三条线,

SVM matlab 代码详解说明

x=[0 1 0 1 2 -1];y=[0 0 1 1 2 -1];z=[-1 1 1 -1 1 1]; %其中,(x,y)代表二维的数据点,z 表示相应点的类型属性. data=[1,0;0,1;2,2;-1,-1;0,0;1,1];% (x,y)构成的数据点 groups=[1;1;1;1;-1;-1];%各个数据点的标签 figure; subplot(2,2,1); Struct1 = svmtrain(data,groups,'Kernel_Function','quadratic',

svm原理解释及推理

 1 初次理解SVM,咱们必须先弄清楚一个概念:线性分类器. 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别(y可以取1或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( wT中的T代表转置): 可能有读者对类别取1或-1有疑问,事实上,这个1或-1的分类标准起源于logistic回归. Logistic回归目的是从特征学习

支持向量机通俗导论(理解SVM的三层境界)

作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完整概括和介

支持向量机通俗导论(理解SVM的三层境地)

支持向量机通俗导论(理解SVM的三层境地) 作者:July :致谢:pluskid.白石.JerryLead.出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因非常简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末參考链接),但在描写叙述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通

简介支持向量机热门(认识SVM三位置)

支持向量机通俗导论(理解SVM的三层境地) 作者:July .致谢:pluskid.白石.JerryLead.出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因非常简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚.尽管网上已经有朋友写得不错了(见文末參考链接),但在描写叙述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下.希望本文在兼顾通

Andrew Ng机器学习笔记+Weka相关算法实现(四)SVM和原始对偶问题

这篇博客主要解说了Ng的课第六.七个视频,涉及到的内容包含,函数间隔和几何间隔.最优间隔分类器 ( Optimal Margin Classifier).原始/对偶问题 ( Primal/Dual Problem). SVM 的对偶问题几个部分. 函数间隔和几何间隔 函数间隔( functional margin) 与几何间隔( geometric margin)是理解SVM的基础和前提. 如果y∈{-1,1},而不再是0,1,我们能够将分类器函数表演示样例如以下: 这里的b參数事实上就是原来的

one class SVM

背景:通常一类问题出现在需要对训练样本进行一定比例的筛选,或者已知的训练样本都是正样本,而负样本却很少的情况. 这种情况下,往往需要训练一个对于训练样本紧凑的分类边界,就可以通过负样本实验.一个简单的实际例子是:一个工厂对于产品的合格性进行检查时,往往所知道是合格产品的参数,而不合格的产品的参数要么空间比较大,要么知道的很少.这种情况下就可以通过已知的合格产品参数来训练一个一类分类器,得到一个紧凑的分类边界,超出这个边界就认为是不合格产品.形式化的说明知乎上有个很好的例子: http://www

机器学习之&amp;&amp;SVM支持向量机入门:Maximum Margin Classifier

概率论只不过是把常识用数学公式表达了出来. --拉普拉斯 0. 前言 这是一篇SVM的入门笔记,来自我对PlusKid.JerryLead.July等大神文章的拜读心得,说是心得还不如说是读文笔记,希望在自己理解的层面上给予SVM这个伟大的机器学习算法概要介绍,让更多的热爱机器学习的伙伴们进入到SVM的世界.PS:文章会以问答的形式为主要结构. 1.概念 1.1.什么是SVM? 支持向量机即 Support Vector Machine,简称 SVM .(第一次接触SVM是在阿里大数据竞赛的时候