HDU 2845 Beans (DP)

Beans

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status Practice HDU 2845

Description

Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1. 

Now, how much qualities can you eat and then get ?

Input

There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn‘t beyond 1000, and 1<=M*N<=200000.

Output

For each case, you just output the MAX qualities you can eat and then get.

Sample Input

4 6
11 0 7 5 13 9
78 4 81 6 22 4
1 40 9 34 16 10
11 22 0 33 39 6

Sample Output

242

思路:

STEP_1:先以行为单位来算,设DP数组存的是以此位置为起点能得到的最大值,在此前提下,DP[i][j]因为相邻的不能走,所以要么加上DP[i][j + 2],要么加上DP[i][j + 3] (假设不越界),取最大的那个就好。从右往左依次计算这一行每个元素的DP值,记录下最大的,放到DP[i][0]里。

STEP_2:重复第一步,只不过对象换成了DP数组里每行0号单元的值,因为此单元放的是此行内的最大值。从上往下,每次选定一行后设此行为最终答案里最下面那行,因为选定一行之后它的上面和下面那一行就废掉了,所以每一行要么加上它上面第二行,要么加上它上面第三行。同理,记录下最大值,最大值即答案。(实际上答案不是最后一行就是倒数第二行,因为没有负数,只会越加越大,不过只有1行的时候就会越界,虽然HDU上的数据貌似没1行的)。

 1 #include<stdio.h>
 2 #include<stdlib.h>
 3 #include<string.h>
 4 #define    MAX    200105
 5
 6 int    main(void)
 7 {
 8     int    n,m;
 9     int    max,temp_1,temp_2,ans;
10
11     while(scanf("%d%d",&n,&m) != EOF)
12     {
13         int    dp[n + 10][m + 10];
14
15         memset(dp,0,sizeof(dp));
16         for(int i = 1;i <= n;i ++)
17             for(int j = 1;j <= m;j ++)
18                 scanf("%d",&dp[i][j]);
19
20         for(int i = 1;i <= n;i ++)
21         {
22             max = dp[i][m];
23             for(int j = m;j >= 1;j --)
24             {
25                 dp[i][j] += dp[i][j + 2] > dp[i][j + 3] ? dp[i][j + 2] : dp[i][j + 3];
26                 max = max > dp[i][j] ? max : dp[i][j];
27             }
28             dp[i][0] = max;
29         }
30
31         max = dp[1][0];
32         dp[3][0] += dp[1][0];
33         for(int i = 4;i <= n;i ++)
34         {
35             dp[i][0] += dp[i - 2][0] > dp[i - 3][0] ? dp[i - 2][0] : dp[i - 3][0];
36             max = max > dp[i][0] ? max : dp[i][0];
37         }
38
39         printf("%d\n",max);
40     }
41
42     return    0;
43 }
时间: 2024-10-22 04:44:17

HDU 2845 Beans (DP)的相关文章

HDU 2845 Beans(DP,最大不连续和)

题意    吃豆子游戏    当你吃了一个格子的豆子   该格子左右两个和上下两行就不能吃了    输入每个格子的豆子数    求你最多能吃多少颗豆子 可以先求出每行你最多可以吃多少颗豆子   然后每行就压缩成只有一个格子了   里面的豆子数就是那一行最多可以吃的豆子数   然后问题就变成求一列最多可以吃多少颗豆子了   和处理每一行一样处理   那么问题就简化成求一行数字的最大不连续和问题了 令d[i]表示某一行前i个豆子的最大和  有两种情况  吃第i个格子中的豆子和不吃第i个格子中的豆子

HDU 2845 Beans (DP)

Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyo

HDU 2845 Beans (最大不连续子序列和)

Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2637    Accepted Submission(s): 1302 Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled wi

HDU 2845 Beans (动规)

Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2596    Accepted Submission(s): 1279 Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled w

HDU 2845(dp)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2845 Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3097    Accepted Submission(s): 1495 Problem Description Bean-eating is an interesting g

HDU 2845 Beans (两次线性dp)

Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3521    Accepted Submission(s): 1681 Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled w

hdu 2845——Beans——————【dp】

Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3418    Accepted Submission(s): 1629 Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled wi

hdu 2845 Beans(DP)

题意: M*N的矩阵,每个格子上有一个值. 规则:如果你拾起了某个格子(i,j)上的值,那么第i-1行.第i+1行.(i,j-1)格子上.(i,j+1)格子上的值都不能取. 问最多可以取得多少值(最大值). 思路: 如果某行取了某一个值,则它的前一行和后一行都不能取.所以我们必须知道这行可以取得的最大值是多少. dp[i]=max( dp[i-1],dp[i-2]+a[i] ) dp[i]:前i个数能获得的最大值.第i个可以取,可以不取. 当每行的dp[N]都算出来后,可以发现从行的角度看,dp

HDU - 2845 Beans

http://acm.hdu.edu.cn/showproblem.php?pid=2845 审题 取一个点 那么相邻行的点和 这一行和它左右相连的点就不能再取了 涉及取舍的问题 整体无法考虑 只能从局部出发-->>动态规划 可惜没看出来 ----要进行状态压缩 就是很标准的dp了 1.先多每一行进dp求得每一行可以得到的最大值 2.在取对n行进行dp得到最终的最大值 所以两类其实方式都是一样的 以求每一行最大值为例 culumn[MAXN]; 定义dp[i] : 前i列(含)可以取 得的最大