Windows上mxnet实战深度学习:Neural Net

前提:

  • 假设已经在Windows上安装配置好mxnet和python语言包。
  • 假设mxnet安装目录为D:\mxnet
  • 假设已安装好wget

  可以参考 这篇文章

打开Windows的命令提示符:

  执行如下命令,进入目录

D:cd D:\mxnet\example\neural-style

  修改download.sh命令,修改为如下内容,并保存执行,下载相关数据文件。

#!/bin/bash

#由于某种墙的原因,可能需要设置代理,去掉#即可
#set http_proxy=http://127.0.0.1:1080
#set https_proxy=https://127.0.0.1:1080

mkdir -p model
cd model
# 添加--no-check-certificate,避免无证书出错
wget --no-check-certificate https://github.com/dmlc/web-data/raw/master/mxnet/neural-style/model/vgg19.params
cd ..

mkdir -p input
cd input
wget --no-check-certificate https://github.com/dmlc/web-data/raw/master/mxnet/neural-style/input/IMG_4343.jpg
wget --no-check-certificate https://github.com/dmlc/web-data/raw/master/mxnet/neural-style/input/starry_night.jpg
cd ..

mkdir -p output

  到 网站,下载已编译好的 numpy、scipy 和 scikit-image  三个 whl文件

  执行如下命令,安装包

pip install numpy-1.11.0+mkl-cp35-cp35m-win_amd64.whl
pip install scipy-0.17.0-cp35-none-win_amd64.whl
pip install scikit_image-0.12.3-cp35-cp35m-win_amd64.whl

  执行如下命令, 进行训练

python run.py --content-image input/IMG_4343.jpg --style-image input/starry_night.jpg

  

  

  

时间: 2025-02-01 10:07:01

Windows上mxnet实战深度学习:Neural Net的相关文章

当Spark遇上TensorFlow分布式深度学习框架原理和实践

近年来,机器学习和深度学习不断被炒热,tensorflow 作为谷歌发布的数值计算和神经网络的新框架也获得了诸多关注,spark和tensorflow深度学习框架的结合,使得tensorflow在现有的spark集群上就可以进行深度学习,而不需要为深度学习设置单独的集群,为了深入了解spark遇上tensorflow分布式深度学习框架的原理和实践,飞马网于4月10日晚,邀请到先后就职于百度.腾讯,负责过多个大数据研发工作的李曙鹏老师进行线上直播,主要向我们介绍spark和深度学习的基本原理.sp

MXNET:深度学习计算-自定义层

虽然 Gluon 提供了大量常用的层,但有时候我们依然希望自定义层.本节将介绍如何使用 NDArray 来自定义一个 Gluon 的层,从而以后可以被重复调用. 不含模型参数的自定义层 我们先介绍如何定义一个不含模型参数的自定义层.事实上,这和 "模型构造" 中介绍的使用 Block 构造模型类似. 通过继承 Block 自定义了一个将输入减掉均值的层:CenteredLayer 类,并将层的计算放在 forward 函数里. class CenteredLayer(nn.Block)

实战深度学习OpenCV(一):canny边缘检测

利用canny边缘检测,我们可以很好地得到哦一个图像的轮廓,下面是基于C++的,这是我们通过这段代码得到的结果: #include "pch.h" #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> using namespace c

深度学习库比较

  深度学习库比较 库名 主语言 从语言 速度 灵活性 文档 适合模型 平台 上手难易 开发者 模式 Tensorflo C++ cuda/python 中等 好 中等 CNN/RNN Linux,OSX 难 Google 分布式/声明式 Caffe C++ cuda/python/Matlab 快 一般 全面 CNN 所有系统 中等 贾杨清 声明式 PyTorc python C/C++ 中等 好 中等 - -- 中等 FaceBook   MXNet c++ cuda/R/julia 快 好

深度学习框架总结

深度学习库比较 库名 主语言 从语言 速度 灵活性 文档 适合模型 平台 上手难易 开发者 模式 Tensorflo C++ cuda/python/Matlab/Ruby/R 中等 好 中等 CNN/RNN Linux,OSX 难 Google 分布式/声明式 Caffe C++ cuda/python/Matlab 快 一般 全面 CNN 所有系统 中等 贾杨清 声明式 PyTorc python C/C++ 中等 好 中等 - – 中等 FaceBook MXNet c++ cuda/R/

一箭N雕:多任务深度学习实战

1.多任务学习导引 多任务学习是机器学习中的一个分支,按1997年综述论文Multi-task Learning一文的定义:Multitask Learning (MTL) is an inductive transfer mechanism whose principle goal is to improve generalization performance. MTL improves generalization by leveraging the domain-specific inf

【深度学习Deep Learning】资料大全

转载:http://www.cnblogs.com/charlotte77/p/5485438.html 最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books Deep Learning66 by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by

主流深度学习框架对比

深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括TensorFlow.Caffe.Keras.CNTK.Torch7.MXNet.Leaf.Theano.DeepLearning4.Lasagne.Neon,等等.然而TensorFlow却杀出重围,在关注度和用户数上都占据绝对优势,大有一统江湖之势.表2-1所示为各个开源框架在GitHub上的数据统计(数据统计于2017年1月3日),可以看到TensorFlow在star数量.fork数量.contributor数量这三个数

一天搞懂深度学习--李宏毅教程分享

原标题:[286页干货]一天搞懂深度学习(台湾资料科学年会课程) 本文是2016 台湾资料科学年会前导课程"一天搞懂深度学习"的全部讲义PPT(共268页),由台湾大学电机工程学助理教授李宏毅主讲.作者在文中分四个部分对神经网络的原理.目前存在形态以及未来的发展进行了介绍.深度学习的每一个核心概念在文中都有相关案例进行呈现,通俗易懂.一天的时间搞懂深度学习?其实并不是没有可能. 深度学习 ( Deep Learning ) 是机器学习 ( Machine Learning ) 中近年来