HDOJ Queuing 2604【求矩阵+矩阵快速幂】

Queuing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3528    Accepted Submission(s): 1590

Problem Description

Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.

Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue
else it is a E-queue.

Your task is to calculate the number of E-queues mod M with length L by writing a program.

Input

Input a length L (0 <= L <= 10 6) and M.

Output

Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.

Sample Input

3 8
4 7
4 8

Sample Output

6
2
1

Author

WhereIsHeroFrom

Source

HDU 1st “Vegetable-Birds Cup” Programming
Open Contest

Recommend

lcy   |   We have carefully selected several similar problems for you:  1588 1757 2606 2603 3117

题意:给你一个长度为L的由m和f两种字母组成的字符串,定义存在fmf以及fff子串的都是不符合要求的串,问长度为L的符合要求的串有多少个?

解题思路:

此题如果直接利用递推关系,处理不好会超内存的。

首先找出递推关系式,先给出递推关系式:( L )=( L - 1 ) + ( L - 3 ) + ( L - 4 ); 可以先尝试推导一下,推不出来再看下面的解释。

考虑当L=n时的情况,有两种情况:

①.如果最后一个字符为m :此时,只要前面长度为n-1的串符合要求,则当前长度为n的串必然符合要求。

②.如果最后一个字符为f:此时,无法确定,因为可能存在不符合要求的串,继续分情况讨论

(1).最后倒数二个字符为f,仍然可能存在不符合要求的串,继续分情况讨论

1.倒数第三个字符为f,因为存在fff,所以该种情况必然不符合要求,舍去

2.倒数第三个字符为m,仍然有可能不符合要求,再分

a.最后第四个字符为f,存在fmf,所以该种情况必然不符合要求,舍去

b.最后第四个字符为m,只要前面长度为n-4的串符合要求,则当前长度为n的串必然也符合要求

(2).最后第二个字符为m,存在可能不符合要求的情况,分

1.最后第三个字符为f,存在fmf,此时必然不符合要求舍去

2.最后第三个字符为m,只要前面长度为n-3的串的情况符合要求,则当前长度为n的串必然符合要求。

所以讲符合要求的情况相加就得到:( L )=( L - 1 ) + ( L - 3 ) + ( L - 4 );

前面已经讲过如果只是用普通递归方法会超内存,所以这里要考虑优化。

怎么优化?先看下面的矩阵相乘的结果:

x矩阵是多少会得到后面的矩阵?我们只需考虑后面矩阵的第一行,因为其他元素为0.

第1行第1列的元素我们需要得到f ( n ),因为f(n)=f(n-1)+f(n-3)+f(n-4); 所以我们必须保留f(n-1),f(n-3),f(n-4) 所以与之相乘的数必须为1.

所以第1列元素可以确定,为1 0 1 1,注意,是第一列而不是第一行。

根据第一行第二列元素,我们可以确定x矩阵第二列元素:1 0 0 0.

根据第一行第三列元素,我们可以确定x矩阵第三列元素:0 1 0 0.

根据第一行第四列元素,我们可以确定x矩阵第四列元素:0 0 1 0.

所以x矩阵已经确定,所以我们可以得到下面的矩阵乘式:

所以,反复乘以x矩阵就可以得到想要的f(n);

所以可以先求出x矩阵的L-4(不是L)次方,到这就转化为了矩阵快速幂问题。然后在用  f(4)   f(3)  f(2)   f(1)   乘以求次方后的矩阵的第一列元素
 ,相加就得到f(n)=res[0][0]*f[4]+res[1][0]*f[3]+res[2][0]*f[2]+res[3[0]*f[1]。

讲解到此结束~欢迎指出错误~。

AC代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#define maxn 5
using namespace std;

int mat[maxn][maxn];
int res[maxn][maxn];
int f[10];

void Matmul(int x[maxn][maxn],int y[maxn][maxn],int Mod)
{
	int t[maxn][maxn]={0};
	for(int i=0;i<4;i++)
		for(int k=0;k<4;k++)
			if(x[i][k])
				for(int j=0;j<4;j++)
				t[i][j]=(t[i][j]+x[i][k]*y[k][j]%Mod)%Mod;
	for(int i=0;i<4;i++)
		for(int j=0;j<4;j++)
		x[i][j]=t[i][j];
}

void Matrix(int t[maxn][maxn],int m,int Mod)
{
	for(int i=0;i<4;i++)
		for(int j=0;j<4;j++)
		res[i][j]=(i==j);
	while(m){
		if(m&1)Matmul(res,t,Mod);
		Matmul(t,t,Mod);
		m>>=1;
	}
}

int main()
{
	int L,M;
	while(scanf("%d%d",&L,&M)!=EOF){
		memset(f,0,sizeof(f));
		f[1]=2;f[2]=4;
	    f[3]=6;f[4]=9;
		int T[maxn][maxn]={0};
		T[0][0]=T[2][0]=T[3][0]=1;
		T[0][1]=T[1][2]=T[2][3]=1;
		if(L==1){
			printf("%d\n",2%M);
			continue;
		}
		if(L==2){
			printf("%d\n",4%M);
			continue;
		}
		if(L==3){
			printf("%d\n",6%M);
			continue;
		}
		if(L==4){
			printf("%d\n",9%M);
			continue;
		}
		Matrix(T,L-4,M);
		int ans=0;
		for(int i=0;i<4;i++){
			ans=(ans+res[i][0]*f[4-i])%M;
		}
		printf("%d\n",ans);
	}
	return 0;
}

版权声明:本文为博主原创文章,转载请注明出处。

时间: 2024-12-15 01:55:01

HDOJ Queuing 2604【求矩阵+矩阵快速幂】的相关文章

快速求斐波那契数列(矩阵乘法+快速幂)

斐波那契数列 给你一个n:f(n)=f(n-1)+f(n-2) 请求出 f(f(n)),由于结果很大请 对答案 mod 10^9+7; 1<=n<=10^100; 用矩阵乘法+快速幂求斐波那契数列是经典应用: 矩阵公式 C i j=C i k *C k j; 根据递推式 构造2*2矩阵: 原始矩阵 1 0 0 1 矩阵 2 1 1 1 0 原始矩阵与矩阵 2相乘达到转化状态效果: 对矩阵二进行快速幂 乘法:达到快速转化矩阵的效果: 即使达到快速转化状态:那么大的数据范围也很难求解: 高精?这有

Poj 3233 Matrix Power Series(矩阵二分快速幂)

题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k,然后结果的每个元素A[i][j] % m.(n <= 30,k < 10^9,m < 10^4) 要用到矩阵快速幂,但我认为最重要的其实还是相加的那个过程,因为k的范围是10^9,一个一个加肯定是不行的,我想了一个办法就是我以k = 8为例说明: ans = A + A^2 + A^3 +

POJ 1845 Sumdiv【同余模运算+递归求等比数列和+快速幂运算】

快速幂运算在第一次训练时候就已经遇到过,这里不赘述 同余模运算也很简单,这里也不说了,无非是(a+b)%m (a*b)%m 把m弄到里面变成(a%m+b%m)%m   (a%m*b%m)%m 今天学的最重要的还是递归二分求等比数列 题目大意是给出A和B,求A^B的约数和 解这个题,首先,对A进行素因子分解得到 (PI(pi^ai))^B 然后我们有约数和公式: 对A=PI(p1^k1) A的所有因子之和为S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^

递推求值【快速幂矩阵】

递推求值 描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f(n)的值,由于f(n)的值可能过大,求出f(n)对1000007取模后的值. 注意:-1对3取模后等于2   输入 第一行是一个整数T,表示测试数据的组数(T<=10000)随后每行有六个整数,分别表示f(1),f(2),a,b,c,n的值.其中0<=f(1),f(2)<100,-100<=a,b,c<=100,1<=n<=10000000

【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)

2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种细胞最初的形态是"长条形",一端是头,一端是尾,中间是躯干.细胞内部含有一列密码(你可以认为它是这种细胞的DNA).密码是一个长度为n的数字串,且仅含有1~9这9种数字,沿着细胞的躯干从头到尾排列着. 首先,细胞会经历一次分裂.细胞将沿躯干方向分裂成若干个球体,躯干将退化成丝状物,连接着相

矩阵乘法快速幂 codevs 1574 广义斐波那契数列

codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入描述 Input Description 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围

【bzoj4887】:[Tjoi2017]可乐 矩阵乘法,快速幂

[bzoj4887]:[Tjoi2017]可乐 题目大意:一张无相连通图(n<=30),从1号点开始走,每秒可以走到相邻的点也可以自爆,求第t秒(t<=1e6)后所有的方案数是多少对2017取模 恩..就是一个矩阵快速幂..矩阵就是原图的邻接矩阵..然后f[i][i]也是1.. 但是这是不会自爆的情况下的矩阵,算上自爆的话要把每次转移的结果求和..蒟蒻想了半天.. 然后发现其实只要再加一行一列,然后f[n+1][i]=1,就可以了.. 意会一下好了..矩阵什么的感觉讲不清楚啊.. 1 /* h

矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“1250 Fibonacci数列”中,我们求出了第n个Fibonacci数列的值.但是1250中,n<=109.现在,你的任务仍然是求出第n个Fibonacci数列的值,但是注意:n为整数,且1 <= n <= 100000000000000 输入描述 Input Description 输入有多组数据,每

codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数

对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些细节,比如快速幂时ans矩阵的初始化方式,快速幂的次数,矩阵乘法过程中对临时矩阵的清零,最后输出结果时的初始矩阵...矩阵快速幂好理解但是细节还是有点小坑的.. 下面就是满满的槽点,,高能慎入!!! 对于这个题目要求矩阵过程中对m取模,结果对g取模,我表示难以接受,,上来没看清题直接wa19个点,另