diskqueue.go

package nsqd

import (
    "bufio"
    "bytes"
    "encoding/binary"
    "errors"
    "fmt"
    "io"
    "math/rand"
    "os"
    "path"
    "sync"
    "sync/atomic"
    "time"
)

// diskQueue implements the BackendQueue interface
// providing a filesystem backed FIFO queue
type diskQueue struct {
    // 64bit atomic vars need to be first for proper alignment on 32bit platforms

    // run-time state (also persisted to disk)
    readPos      int64
    writePos     int64
    readFileNum  int64
    writeFileNum int64
    depth        int64

    sync.RWMutex

    // instantiation time metadata
    name            string
    dataPath        string
    maxBytesPerFile int64 // currently this cannot change once created
    minMsgSize      int32
    maxMsgSize      int32
    syncEvery       int64         // number of writes per fsync
    syncTimeout     time.Duration // duration of time per fsync
    exitFlag        int32
    needSync        bool

    // keeps track of the position where we have read
    // (but not yet sent over readChan)
    nextReadPos     int64
    nextReadFileNum int64

    readFile  *os.File
    writeFile *os.File
    reader    *bufio.Reader
    writeBuf  bytes.Buffer

    // exposed via ReadChan()
    readChan chan []byte

    // internal channels
    writeChan         chan []byte
    writeResponseChan chan error
    emptyChan         chan int
    emptyResponseChan chan error
    exitChan          chan int
    exitSyncChan      chan int

    logger Logger
}

// newDiskQueue instantiates a new instance of diskQueue, retrieving metadata
// from the filesystem and starting the read ahead goroutine
func newDiskQueue(name string, dataPath string, maxBytesPerFile int64,
    minMsgSize int32, maxMsgSize int32,
    syncEvery int64, syncTimeout time.Duration,
    logger Logger) BackendQueue {
    d := diskQueue{
        name:              name,
        dataPath:          dataPath,
        maxBytesPerFile:   maxBytesPerFile,
        minMsgSize:        minMsgSize,
        maxMsgSize:        maxMsgSize,
        readChan:          make(chan []byte),
        writeChan:         make(chan []byte),
        writeResponseChan: make(chan error),
        emptyChan:         make(chan int),
        emptyResponseChan: make(chan error),
        exitChan:          make(chan int),
        exitSyncChan:      make(chan int),
        syncEvery:         syncEvery,
        syncTimeout:       syncTimeout,
        logger:            logger,
    }

    // no need to lock here, nothing else could possibly be touching this instance
    err := d.retrieveMetaData()
    if err != nil && !os.IsNotExist(err) {
        d.logf("ERROR: diskqueue(%s) failed to retrieveMetaData - %s", d.name, err)
    }

    go d.ioLoop()

    return &d
}

func (d *diskQueue) logf(f string, args ...interface{}) {
    if d.logger == nil {
        return
    }
    d.logger.Output(2, fmt.Sprintf(f, args...))
}

// Depth returns the depth of the queue
func (d *diskQueue) Depth() int64 {
    return atomic.LoadInt64(&d.depth)
}

// ReadChan returns the []byte channel for reading data
func (d *diskQueue) ReadChan() chan []byte {
    return d.readChan
}

// Put writes a []byte to the queue
func (d *diskQueue) Put(data []byte) error {
    d.RLock()
    defer d.RUnlock()

    if d.exitFlag == 1 {
        return errors.New("exiting")
    }

    d.writeChan <- data
    return <-d.writeResponseChan
}

// Close cleans up the queue and persists metadata
func (d *diskQueue) Close() error {
    err := d.exit(false)
    if err != nil {
        return err
    }
    return d.sync()
}

func (d *diskQueue) Delete() error {
    return d.exit(true)
}

func (d *diskQueue) exit(deleted bool) error {
    d.Lock()
    defer d.Unlock()

    d.exitFlag = 1

    if deleted {
        d.logf("DISKQUEUE(%s): deleting", d.name)
    } else {
        d.logf("DISKQUEUE(%s): closing", d.name)
    }

    close(d.exitChan)
    // ensure that ioLoop has exited
    <-d.exitSyncChan

    if d.readFile != nil {
        d.readFile.Close()
        d.readFile = nil
    }

    if d.writeFile != nil {
        d.writeFile.Close()
        d.writeFile = nil
    }

    return nil
}

// Empty destructively clears out any pending data in the queue
// by fast forwarding read positions and removing intermediate files
func (d *diskQueue) Empty() error {
    d.RLock()
    defer d.RUnlock()

    if d.exitFlag == 1 {
        return errors.New("exiting")
    }

    d.logf("DISKQUEUE(%s): emptying", d.name)

    d.emptyChan <- 1
    return <-d.emptyResponseChan
}

func (d *diskQueue) deleteAllFiles() error {
    err := d.skipToNextRWFile()

    innerErr := os.Remove(d.metaDataFileName())
    if innerErr != nil && !os.IsNotExist(innerErr) {
        d.logf("ERROR: diskqueue(%s) failed to remove metadata file - %s", d.name, innerErr)
        return innerErr
    }

    return err
}

func (d *diskQueue) skipToNextRWFile() error {
    var err error

    if d.readFile != nil {
        d.readFile.Close()
        d.readFile = nil
    }

    if d.writeFile != nil {
        d.writeFile.Close()
        d.writeFile = nil
    }

    for i := d.readFileNum; i <= d.writeFileNum; i++ {
        fn := d.fileName(i)
        innerErr := os.Remove(fn)
        if innerErr != nil && !os.IsNotExist(innerErr) {
            d.logf("ERROR: diskqueue(%s) failed to remove data file - %s", d.name, innerErr)
            err = innerErr
        }
    }

    d.writeFileNum++
    d.writePos = 0
    d.readFileNum = d.writeFileNum
    d.readPos = 0
    d.nextReadFileNum = d.writeFileNum
    d.nextReadPos = 0
    atomic.StoreInt64(&d.depth, 0)

    return err
}

// readOne performs a low level filesystem read for a single []byte
// while advancing read positions and rolling files, if necessary
func (d *diskQueue) readOne() ([]byte, error) {
    var err error
    var msgSize int32

    if d.readFile == nil {
        curFileName := d.fileName(d.readFileNum)
        d.readFile, err = os.OpenFile(curFileName, os.O_RDONLY, 0600)
        if err != nil {
            return nil, err
        }

        d.logf("DISKQUEUE(%s): readOne() opened %s", d.name, curFileName)

        if d.readPos > 0 {
            _, err = d.readFile.Seek(d.readPos, 0)
            if err != nil {
                d.readFile.Close()
                d.readFile = nil
                return nil, err
            }
        }

        d.reader = bufio.NewReader(d.readFile)
    }

    err = binary.Read(d.reader, binary.BigEndian, &msgSize)
    if err != nil {
        d.readFile.Close()
        d.readFile = nil
        return nil, err
    }

    if msgSize < d.minMsgSize || msgSize > d.maxMsgSize {
        // this file is corrupt and we have no reasonable guarantee on
        // where a new message should begin
        d.readFile.Close()
        d.readFile = nil
        return nil, fmt.Errorf("invalid message read size (%d)", msgSize)
    }

    readBuf := make([]byte, msgSize)
    _, err = io.ReadFull(d.reader, readBuf)
    if err != nil {
        d.readFile.Close()
        d.readFile = nil
        return nil, err
    }

    totalBytes := int64(4 + msgSize)

    // we only advance next* because we have not yet sent this to consumers
    // (where readFileNum, readPos will actually be advanced)
    d.nextReadPos = d.readPos + totalBytes
    d.nextReadFileNum = d.readFileNum

    // TODO: each data file should embed the maxBytesPerFile
    // as the first 8 bytes (at creation time) ensuring that
    // the value can change without affecting runtime
    if d.nextReadPos > d.maxBytesPerFile {
        if d.readFile != nil {
            d.readFile.Close()
            d.readFile = nil
        }

        d.nextReadFileNum++
        d.nextReadPos = 0
    }

    return readBuf, nil
}

// writeOne performs a low level filesystem write for a single []byte
// while advancing write positions and rolling files, if necessary
func (d *diskQueue) writeOne(data []byte) error {
    var err error

    if d.writeFile == nil {
        curFileName := d.fileName(d.writeFileNum)
        d.writeFile, err = os.OpenFile(curFileName, os.O_RDWR|os.O_CREATE, 0600)
        if err != nil {
            return err
        }

        d.logf("DISKQUEUE(%s): writeOne() opened %s", d.name, curFileName)

        if d.writePos > 0 {
            _, err = d.writeFile.Seek(d.writePos, 0)
            if err != nil {
                d.writeFile.Close()
                d.writeFile = nil
                return err
            }
        }
    }

    dataLen := int32(len(data))

    if dataLen < d.minMsgSize || dataLen > d.maxMsgSize {
        return fmt.Errorf("invalid message write size (%d) maxMsgSize=%d", dataLen, d.maxMsgSize)
    }

    d.writeBuf.Reset()
    err = binary.Write(&d.writeBuf, binary.BigEndian, dataLen)
    if err != nil {
        return err
    }

    _, err = d.writeBuf.Write(data)
    if err != nil {
        return err
    }

    // only write to the file once
    _, err = d.writeFile.Write(d.writeBuf.Bytes())
    if err != nil {
        d.writeFile.Close()
        d.writeFile = nil
        return err
    }

    totalBytes := int64(4 + dataLen)
    d.writePos += totalBytes
    atomic.AddInt64(&d.depth, 1)

    if d.writePos > d.maxBytesPerFile {
        d.writeFileNum++
        d.writePos = 0

        // sync every time we start writing to a new file
        err = d.sync()
        if err != nil {
            d.logf("ERROR: diskqueue(%s) failed to sync - %s", d.name, err)
        }

        if d.writeFile != nil {
            d.writeFile.Close()
            d.writeFile = nil
        }
    }

    return err
}

// sync fsyncs the current writeFile and persists metadata
func (d *diskQueue) sync() error {
    if d.writeFile != nil {
        err := d.writeFile.Sync()
        if err != nil {
            d.writeFile.Close()
            d.writeFile = nil
            return err
        }
    }

    err := d.persistMetaData()
    if err != nil {
        return err
    }

    d.needSync = false
    return nil
}

// retrieveMetaData initializes state from the filesystem
func (d *diskQueue) retrieveMetaData() error {
    var f *os.File
    var err error

    fileName := d.metaDataFileName()
    f, err = os.OpenFile(fileName, os.O_RDONLY, 0600)
    if err != nil {
        return err
    }
    defer f.Close()

    var depth int64
    _, err = fmt.Fscanf(f, "%d\n%d,%d\n%d,%d\n",
        &depth,
        &d.readFileNum, &d.readPos,
        &d.writeFileNum, &d.writePos)
    if err != nil {
        return err
    }
    atomic.StoreInt64(&d.depth, depth)
    d.nextReadFileNum = d.readFileNum
    d.nextReadPos = d.readPos

    return nil
}

// persistMetaData atomically writes state to the filesystem
func (d *diskQueue) persistMetaData() error {
    var f *os.File
    var err error

    fileName := d.metaDataFileName()
    tmpFileName := fmt.Sprintf("%s.%d.tmp", fileName, rand.Int())

    // write to tmp file
    f, err = os.OpenFile(tmpFileName, os.O_RDWR|os.O_CREATE, 0600)
    if err != nil {
        return err
    }

    _, err = fmt.Fprintf(f, "%d\n%d,%d\n%d,%d\n",
        atomic.LoadInt64(&d.depth),
        d.readFileNum, d.readPos,
        d.writeFileNum, d.writePos)
    if err != nil {
        f.Close()
        return err
    }
    f.Sync()
    f.Close()

    // atomically rename
    return atomicRename(tmpFileName, fileName)
}

func (d *diskQueue) metaDataFileName() string {
    return fmt.Sprintf(path.Join(d.dataPath, "%s.diskqueue.meta.dat"), d.name)
}

func (d *diskQueue) fileName(fileNum int64) string {
    return fmt.Sprintf(path.Join(d.dataPath, "%s.diskqueue.%06d.dat"), d.name, fileNum)
}

func (d *diskQueue) checkTailCorruption(depth int64) {
    if d.readFileNum < d.writeFileNum || d.readPos < d.writePos {
        return
    }

    // we‘ve reached the end of the diskqueue
    // if depth isn‘t 0 something went wrong
    if depth != 0 {
        if depth < 0 {
            d.logf(
                "ERROR: diskqueue(%s) negative depth at tail (%d), metadata corruption, resetting 0...",
                d.name, depth)
        } else if depth > 0 {
            d.logf(
                "ERROR: diskqueue(%s) positive depth at tail (%d), data loss, resetting 0...",
                d.name, depth)
        }
        // force set depth 0
        atomic.StoreInt64(&d.depth, 0)
        d.needSync = true
    }

    if d.readFileNum != d.writeFileNum || d.readPos != d.writePos {
        if d.readFileNum > d.writeFileNum {
            d.logf(
                "ERROR: diskqueue(%s) readFileNum > writeFileNum (%d > %d), corruption, skipping to next writeFileNum and resetting 0...",
                d.name, d.readFileNum, d.writeFileNum)
        }

        if d.readPos > d.writePos {
            d.logf(
                "ERROR: diskqueue(%s) readPos > writePos (%d > %d), corruption, skipping to next writeFileNum and resetting 0...",
                d.name, d.readPos, d.writePos)
        }

        d.skipToNextRWFile()
        d.needSync = true
    }
}

func (d *diskQueue) moveForward() {
    oldReadFileNum := d.readFileNum
    d.readFileNum = d.nextReadFileNum
    d.readPos = d.nextReadPos
    depth := atomic.AddInt64(&d.depth, -1)

    // see if we need to clean up the old file
    if oldReadFileNum != d.nextReadFileNum {
        // sync every time we start reading from a new file
        d.needSync = true

        fn := d.fileName(oldReadFileNum)
        err := os.Remove(fn)
        if err != nil {
            d.logf("ERROR: failed to Remove(%s) - %s", fn, err)
        }
    }

    d.checkTailCorruption(depth)
}

func (d *diskQueue) handleReadError() {
    // jump to the next read file and rename the current (bad) file
    if d.readFileNum == d.writeFileNum {
        // if you can‘t properly read from the current write file it‘s safe to
        // assume that something is fucked and we should skip the current file too
        if d.writeFile != nil {
            d.writeFile.Close()
            d.writeFile = nil
        }
        d.writeFileNum++
        d.writePos = 0
    }

    badFn := d.fileName(d.readFileNum)
    badRenameFn := badFn + ".bad"

    d.logf(
        "NOTICE: diskqueue(%s) jump to next file and saving bad file as %s",
        d.name, badRenameFn)

    err := atomicRename(badFn, badRenameFn)
    if err != nil {
        d.logf(
            "ERROR: diskqueue(%s) failed to rename bad diskqueue file %s to %s",
            d.name, badFn, badRenameFn)
    }

    d.readFileNum++
    d.readPos = 0
    d.nextReadFileNum = d.readFileNum
    d.nextReadPos = 0

    // significant state change, schedule a sync on the next iteration
    d.needSync = true
}

// ioLoop provides the backend for exposing a go channel (via ReadChan())
// in support of multiple concurrent queue consumers
//
// it works by looping and branching based on whether or not the queue has data
// to read and blocking until data is either read or written over the appropriate
// go channels
//
// conveniently this also means that we‘re asynchronously reading from the filesystem
func (d *diskQueue) ioLoop() {
    var dataRead []byte
    var err error
    var count int64
    var r chan []byte

    syncTicker := time.NewTicker(d.syncTimeout)

    for {
        // dont sync all the time :)
        if count == d.syncEvery {
            d.needSync = true
        }

        if d.needSync {
            err = d.sync()
            if err != nil {
                d.logf("ERROR: diskqueue(%s) failed to sync - %s", d.name, err)
            }
            count = 0
        }

        if (d.readFileNum < d.writeFileNum) || (d.readPos < d.writePos) {
            if d.nextReadPos == d.readPos {
                dataRead, err = d.readOne()
                if err != nil {
                    d.logf("ERROR: reading from diskqueue(%s) at %d of %s - %s",
                        d.name, d.readPos, d.fileName(d.readFileNum), err)
                    d.handleReadError()
                    continue
                }
            }
            r = d.readChan
        } else {
            r = nil
        }

        select {
        // the Go channel spec dictates that nil channel operations (read or write)
        // in a select are skipped, we set r to d.readChan only when there is data to read
        case r <- dataRead:
            count++
            // moveForward sets needSync flag if a file is removed
            d.moveForward()
        case <-d.emptyChan:
            d.emptyResponseChan <- d.deleteAllFiles()
            count = 0
        case dataWrite := <-d.writeChan:
            count++
            d.writeResponseChan <- d.writeOne(dataWrite)
        case <-syncTicker.C:
            if count == 0 {
                // avoid sync when there‘s no activity
                continue
            }
            d.needSync = true
        case <-d.exitChan:
            goto exit
        }
    }

exit:
    d.logf("DISKQUEUE(%s): closing ... ioLoop", d.name)
    syncTicker.Stop()
    d.exitSyncChan <- 1
}
				
时间: 2024-10-13 06:04:15

diskqueue.go的相关文章

nsq源码阅读笔记之nsqd(三)——diskQueue

diskQueue是backendQueue接口的一个实现.backendQueue的作用是在实现在内存go channel缓冲区满的情况下对消息的处理的对象. 除了diskQueue外还有dummyBackendQueue实现了backendQueue接口. 对于临时(#ephemeral结尾)Topic/Channel,在创建时会使用dummyBackendQueue初始化backend, dummyBackendQueue只是为了统一临时和非临时Topic/Channel而写的,它只是实现

深入NSQ 之旅[转载]

介绍 NSQ是一个实时的分布式消息平台.它的设计目标是为在多台计算机上运行的松散服务提供一个现代化的基础设施骨架.这篇文章介绍了 基于go语言的NSQ的内部架构,它能够为高吞吐量的网络服务器带来 性能的优化,稳定性和鲁棒性.可以说, 如果不是因为我们在bitly使用go语言,NSQ就不会存在.这里既会讲NSQ的功能也会涉及语言提供的特征.当然,语言会影响思维,这次也不例外.现在回想起来,选择使用go语言已经收到了十倍的回报.由语言带来的兴奋和社区的积极反馈为这个项目提供了极大的帮助. 概要 NS

LoadRunner性能测试结果计数器指标说明

LoadRunner性能测试结果计数器指标说明 转载2015-09-23 09:57:13 标签:loadrunner计数器 针对性能测试结果分析过程中,面对大量的测试数据,反而感觉无从下手分析.今天我们就Windows操作系统计数器中的个别被监控对象进行简单的说明. Memory: ·Available Mbytes 简述:可用物理内存数.如果Available Mbytes的值很小(4 MB或更小),则说明计算机上总的内存可能不足,或某程序没有释放内存. 参考值:4 MB或更小,至少要有10

scsi底层设备注册——如何一步步注册到block层

首先,让我们先进入ata_host_register函数,看如何一步一步的去向上层注册的. intata_host_register(struct ata_host *host, struct scsi_host_template *sht) { int i, rc; host->n_tags =clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);// can_queue =1  MAX_QUEUE = 32 by wyf /* host must have

借助Sigar API获取磁盘信息

Sigar(全称System Information Gatherer And Reporter,即系统信息收集报表器),它提供了一个开源的跨平台的收集计算机硬件和操作系统信息的API(该API底层接口用C语言编写),本文将演示如何借助Sigar API获取磁盘信息: package com.ghj.packageoftest; import org.hyperic.sigar.FileSystem; import org.hyperic.sigar.FileSystemUsage; impor

options.go

package nsqd import (     "crypto/md5"     "crypto/tls"     "hash/crc32"     "io"     "log"     "os"     "time" ) type Options struct {     // basic options     ID int64 `flag:"wor

nsq源码阅读笔记之nsqd(二)——Topic

与Topic相关的代码主要位于nsqd/nsqd.go, nsqd/topic.go中. Topic的获取 Topic通过GetTopic函数获取 GetTopic函数用于获取topic对象,首先先尝试从topicMap表中获取,如果指定的topic存在,则直接返回topic对象. 当topic不存在时需要新建一个topic,加入到topicMap中, 如果启用了nsqlookupd则需要从lookupd中获取该topic的所有channel,在去除#ephemeral结尾的临时channel后

如何识别SQL Server中的IO瓶颈

原文:如何识别SQL Server中的IO瓶颈 原文出自: http://www.mssqltips.com/sqlservertip/2329/how-to-identify-io-bottlenecks-in-ms-sql-server/ 问题: 我们可能经常会遇到SQLServer数据库频繁关闭的情况.在分析了内存和CPU使用情况后,我们需要继续调查根源是否在I/O.我们应该如何识别SQLServer是否有I/O相关的瓶颈? 解决: 当数据页经常从缓冲池中移进移出的时候,I/O子系统就会成