Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 44390 | Accepted: 16149 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<cstdlib> #include<algorithm> using namespace std; #define N 1000000 int n,reflect[N],c[N]; long long ans; struct node { int val; int pos; }a[N]; bool cmp(node a,node b) { return a.val<b.val; } int lowbit(int x) { return x&(-x); } int sum(int x) { int sum=0; while(x>0) { sum+=c[x]; x=x-lowbit(x); } return sum; } void add(int pos,int x) { while(pos<N) { c[pos]+=x; pos+=lowbit(pos); } } int main() { while(scanf("%d",&n)!=EOF) { if(n==0) break; memset(reflect,0,sizeof(reflect)); memset(c,0,sizeof(c)); ans=0; for(int i=1;i<=n;i++) { scanf("%d",&a[i].val); a[i].pos=i; } sort(a+1,a+1+n,cmp); for(int i=1;i<=n;i++) reflect[a[i].pos]=i; for(int i=1;i<=n;i++) { add(reflect[i],1); ans+=i-sum(reflect[i]); } printf("%I64d\n",ans); } return 0; }