HDU 5375——Gray code——————【dp||讨论】

Gray code

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 569    Accepted Submission(s): 337

Problem Description

The reflected binary code, also known as Gray code after Frank Gray, is a binary numeral system where two successive values differ in only onebit (binary digit). The reflected binary code was originally designed to prevent spurious output from electromechanical switches. Today, Gray codes are widely used to facilitate error correction in digital communications such as digital terrestrial television and some cable TV systems.

Now , you are given a binary number of length n including ‘0’ , ’1’ and ‘?’(? means that you can use either 0 or 1 to fill this position) and n integers(a1,a2,….,an) . A certain binary number corresponds to a gray code only. If the ith bit of this gray code is 1,you can get the point ai.
Can you tell me how many points you can get at most?

For instance, the binary number “00?0” may be “0000” or “0010”,and the corresponding gray code are “0000” or “0011”.You can choose “0000” getting nothing or “0011” getting the point a3 and a4.

Input

The first line of the input contains the number of test cases T.

Each test case begins with string with ‘0’,’1’ and ‘?’.

The next line contains n (1<=n<=200000) integers (n is the length of the string).

a1 a2 a3 … an (1<=ai<=1000)

Output

For each test case, output “Case #x: ans”, in which x is the case number counted from one,’ans’ is the points you can get at most

Sample Input

2

00?0

1 2 4 8

????

1 2 4 8

Sample Output

Case #1: 12

Case #2: 15

Hint

https://en.wikipedia.org/wiki/Gray_code

http://baike.baidu.com/view/358724.htm

题目大意:给出一个字符串表示二进制,只含有1,0,?这三种字符。?可以转化成1或者0。下面有字符串长度个值,分别表示该位的价值。让你把二进制串转化成格雷码,转化后的格雷码中是1的位置,可以获得对应下面的价值。问你最大能获得的价值是多少。

解题思路1:dp[i][j]表示二进制第i位为j时的最大价值。那么当str[i]为’1‘时,dp[i][1]=max(dp[i-1][0]+a[i],dp[i-1][1])。当str[i]为‘0‘时,dp[i][0]=max(dp[i-1][0],dp[i-1][1]+a[i])。当str[i]为’?‘时,dp[i][0]=max(dp[i-1][1]+a[i],dp[i-1][0]),dp[i][1]=max(dp[i-1][0]+a[i],dp[i-1][1])。同时应该注意初始化。

解题思路2:当时比赛没想到dp。跟对友讨论出来了一种方法,比较麻烦。逆向进行,考虑问号两边的数字是否相同,同时考虑问号个数的奇偶,还有就是要边界处理。比较繁琐。

dp:

#include<bits/stdc++.h>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
const int maxn=1e5+200;
const int INF=0x3f3f3f3f;
int dp[2*maxn][2];
int a[2*maxn];
char str[2*maxn];
int main(){
    int t,cnt=0;
    scanf("%d",&t);
    while(t--){
        scanf("%s",str+1);
        int len=strlen(str+1);
        for(int i=1;i<=len;i++){
            scanf("%d",&a[i]);
            dp[i][1]=dp[i][0]=-INF;
        }
        if(str[1]==‘0‘){
            dp[1][0]=0;
        }else if(str[1]==‘1‘){
            dp[1][1]=a[1];
        }else{
            dp[1][0]=0;
            dp[1][1]=a[1];
        }
        for(int i=2;i<=len;i++){
            if(str[i]==‘0‘){
                dp[i][0]=max(dp[i-1][0],dp[i-1][1]+a[i]);
            }else if(str[i]==‘1‘){
                dp[i][1]=max(dp[i-1][0]+a[i],dp[i-1][1]);
            }else {
                dp[i][1]=max(dp[i-1][0]+a[i],dp[i-1][1]);
                dp[i][0]=max(dp[i-1][1]+a[i],dp[i-1][0]);
            }
        }
        printf("Case #%d: %d\n",++cnt,max(dp[len][1],dp[len][0]));
    }
    return 0;
}

  

讨论:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn=1e6+200;
const int INF=0x3f3f3f3f;
char str[2*maxn];
int a[maxn*2];
int main(){
    int t,cnt=0;
    scanf("%d",&t);
    while(t--){
        scanf("%s",str);
        int len=strlen(str);
        for(int i=0;i<len;i++)
            scanf("%d",&a[i]);
        int sum=0,pos=len,flag=-1;
        int i;
        for(i=len-1;i>=0;i--){  //逆序处理
            if(str[i]==‘0‘){
                if(flag==1){    //如果右边有1
                    sum+=a[pos];
                }
                flag=0; //表示当前是0
                pos=i;
                continue;
            }else if(str[i]==‘1‘){
                if(flag==0){
                    sum+=a[pos];
                }
                flag=1;
                pos=i;
                continue;
            }else{  //是问号
                int num=0,sumv,minv;
                if(flag!=-1){
                    minv=a[pos],sumv=a[pos];
                }
                else {
                    minv=INF,sumv=0;
                }
                int j;
                for(j=i;j>=0;j--){
                    if(str[j]==‘0‘){
                        if(flag==1){
                            if(num%2==1){   //如果问号两边不同,且中间的问号为奇数个,舍弃这段中的最小值
                                sum+=(sumv-minv);
                            }else {
                                sum+=sumv;
                            }
                        }else if(flag==0){
                            if(num%2==1){   //如果两边相同,且中间为奇数个,加上这段所有值
                                sum+=sumv;
                            }else{
                                sum+=(sumv-minv);
                            }

                        }else{
                            sum+=sumv;
                        }
                        flag=-1;
                        pos=len;
                        i=j+1;
                        break;
                    }else if(str[j]==‘1‘){
                        if(flag==0){
                            if(num%2==1){
                                sum+=(sumv-minv);
                            }else{
                                sum+=sumv;
                            }
                        }else if(flag==1){
                            if(num%2==0){
                                sum+=(sumv-minv);
                            }else{
                                sum+=sumv;
                            }
                        }else{
                            sum+=sumv;
                        }
                        flag=-1;
                        pos=len;
                        i=j+1;
                        break;
                    }else {
                        num++;
                        sumv+=a[j];
                        if(minv>a[j]){
                            minv=a[j];
                        }
                    }
                }
                if(j==-1){  //边界处理,比较恶心
                   i=0;
                    if(flag==-1 )
                        sum+=sumv;
                    else if (flag==1){
                        if(num%2==0){
                            sum+= sumv;
                        }
                        else sum+=(sumv-minv);
                    }else {
                        if(num%2==1){
                            sum+=sumv;
                        }else{
                            sum+=(sumv-minv);
                        }
                    }
                }
            }
        }
        if(str[0]==‘1‘&&i==-1){ //字串第一位
            sum+=a[0];
        }
        printf("Case #%d: %d\n",++cnt,sum);
    }
    return 0;
}

  

时间: 2024-10-08 04:17:53

HDU 5375——Gray code——————【dp||讨论】的相关文章

hdu 5375 Gray code dp

#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; const int N=200000+5; const int inf=1<<24; int dp[N][2],a[N]; char s[2*N]; int main() { int n,m,i,_; scanf("%d",&_); for(int k=1;k<=_;k+

hdu 5375 Gray code(DP)

hdu 5375 Gray code Problem Description The reflected binary code, also known as Gray code after Frank Gray, is a binary numeral system where two successive values differ in only onebit (binary digit). The reflected binary code was originally designed

HDU 5375 Gray code (简单dp)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5375 题面: Gray code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 626    Accepted Submission(s): 369 Problem Description The reflected binary cod

hdu 5375 - Gray code(dp) 解题报告

Gray code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 684    Accepted Submission(s): 402 Problem Description The reflected binary code, also known as Gray code after Frank Gray, is a binary

HDOJ 5375 Gray code DP

标准格雷码的性质:二进制a1 a2 ... an,对应的格雷码为a1 (a1 xor a2) ... (an-1 xor an) 题目就可以转为O(n)的dp dp[i][j]表示二进制第i位为j时前i位对应最大分数. Gray code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 298    Accepted Submissio

HDU HDU 5375 Gray code(二进制和格雷码)

Description: The reflected binary code, also known as Gray code after Frank Gray, is a binary numeral system where two successive values differ in only onebit (binary digit). The reflected binary code was originally designed to prevent spurious outpu

HDU 5375 Gray code(模拟)

Gray code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 65    Accepted Submission(s): 35 Problem Description The reflected binary code, also known as Gray code after Frank Gray, is a binary n

HDU 5375 Gray code

题意:给出一个二进制数,其中有些位的数字不确定,对于所有对应的格雷码,与一个序列a对应,第i位数字为1时得分a[i],求最大的得分. 解法:一个二进制数x对应的格雷码为x ^ (x >> 1),题解说是个dp……但其实就四种情况……判一下就好了 代码: #include<stdio.h> #include<iostream> #include<algorithm> #include<string> #include<string.h>

HDU 5375(2015多校7)-Gray code(dp)

题目地址:HDU 5375 题意:给你一个二进制串,带'?'的位置可以由你来决定填'1'还是'0',补充完整之后转换成格雷码表示,每一个位置都有一个权值a[i],只有格雷码为'1'的位可以加上权值,问你最终权值之和最大为多少. 思路:首先要明白二进制码和格雷码是如何转换的: dp[i][0]表示第i位为0的时候的最大值,dp[i][1]表示第i位为1的时候的最大值.对于第i位的最大值由dp[i-1][0],dp[i-1][1]和当前权值a[i]得到.当前的位的二进制码有0,1,?三种情况,所以就