【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

Description

  求第k个没有完全平方因子的数,k<=1e9。

Solution

  这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数。

  然而k太大数组开不下来是吧,于是这么处理。

  二分答案x,问题转化为求[1,x]间有多少个没有完全平方因子的数。

  容斥,加上全部,减去一个质数的平方的倍数个数,加上两个质数乘积的平方的倍数个数...

  然后发现,每个数的系数就是µ

  这也说明了莫比乌斯的原理就是容斥,µ函数就是容斥系数

  具体来说,对于每一个i<=sqrt(x),对于ans的贡献就是µ[i]*int(n/(i*i))(向下取整)

  有 于是二分上限2*k,这个公式怎么来的我也不知道...

  复杂度为log(n)*sqrt(n)

Code

  一开始直接mid=(l+r)>>1溢出T了一发

  正确姿势mid=l>>1+r>>1+(l&r&1)

  

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 #include<cmath>
 5 using namespace std;
 6 const int maxn=5e4+5;
 7
 8 int mu[maxn],flag[maxn];
 9 int prime[maxn],cnt;
10
11 int getmu(){
12     mu[1]=1;
13     for(int i=2;i<maxn;i++){
14         if(!flag[i]){
15             prime[++cnt]=i;
16             mu[i]=-1;
17         }
18         for(int j=1;i*prime[j]<maxn&&j<=cnt;j++){
19             flag[i*prime[j]]=1;
20             if(i%prime[j]==0){
21                 mu[i*prime[j]]=0;
22                 break;
23             }
24             mu[i*prime[j]]=-mu[i];
25         }
26     }
27 }
28
29 int work(int n){
30     int ret=0;
31     for(int i=1;i*i<=n;i++)
32         ret+=mu[i]*int(1.0*n/(i*i));
33     return ret;
34 }
35
36 int main(){
37     int T,k;
38     scanf("%d",&T);
39     getmu();
40
41     while(T--){
42         scanf("%d",&k);
43         int l=1,r=2*k;
44         while(l<r){
45             int mid=(l>>1)+(r>>1)+(l&r&1);
46             if(work(mid)>=k) r=mid;
47             else l=mid+1;
48         }
49         printf("%d\n",l);
50     }
51     return 0;
52 }
时间: 2024-10-12 21:18:12

【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数的相关文章

cf900D. Unusual Sequences(容斥 莫比乌斯反演)

题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显然\(g[i] = 2^{i-1}\)(插板后每空位放不放) 同时还可以枚举一下gcd,设\(f[i]\)表示满足和为\(i\)且所有数的gcd为1的方案,\(g[i] = \sum_{d | i} f[\frac{n}{d}]\) 反演一下,\(f[i] = \sum_{d | i} \mu(d)

codeforces B. Friends and Presents(二分+容斥)

题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值,那么s1 = v/x是能被x整除的个数 s2 = v/y是能被y整除数的个数,s3 = v/lcm(x, y)是能被x,y的最小公倍数 整除的个数! 那么 v-s1>=c1 && v-s2>=c2 && v-s3>=c1+c2就是二分的条件! 1 #incl

poj2773 Happy 2006(二分+容斥)

题目链接:点这里!!!! 题意: 给你两个整数m(1<=m<=1e6),k(1<=k<=1e8).求第k个与m互质的数是多少. 题解: 直接二分+容斥. 代码: #include<cstdio> #include<cstring> #include<iostream> #include<sstream> #include<algorithm> #include<vector> #include<bitse

BZOJ 2440: [中山市选2011]完全平方数 二分答案 + 容斥原理 + 莫比乌斯反演

http://www.lydsy.com/JudgeOnline/problem.php?id=2440 第一道莫比乌斯反演的题目. 二分答案 + 容斥那里还是挺好想的. 二分一个答案val,需要[1, val]之间存在的合法数字个数 >= k即可. 怎么判断呢?可以容斥,开始的时候有ans = val个,但是这里明显有些数字不符合. ans -= ([1...val]中有多少个2^2倍  + [1...val]中有多少个3^2倍 + [1...val]中有多少个5^2倍) ...... 但是减

POJ 2773 Happy 2006 二分+容斥(入门

题目链接:点击打开链接 题意: 输入n ,k 求与n互质的第k个数(这个数可能>n) 思路: solve(mid)表示[1,mid]中有多少个和n互质,然后二分一下最小的mid 使得互质个数==k solve(x) 实现: 与n互质的个数=所有数-与n不互质的数=所有数-(与n有一个因子-与n有2个因子的+与n有3个因子的) 状压n的因子个数,然后根据上面的公式容斥得到. #include <stdio.h> #include <iostream> #include <

第k个互质数(二分 + 容斥)

描述两个数的a,b的gcd为1,即a,b互质,现在给你一个数m,你知道与它互质的第k个数是多少吗?与m互质的数按照升序排列. 输入 输入m ,k (1<=m<=1000000;1<=k<=100000000) 输出 输出第k个数. 样例输入 10 1 10 2 10 3 样例输出 1 3 7 首先对m进行质因数分解,求出m有哪些质因数,然后用容斥求[1, mid]内与m互质的数有多少个. 判断的时候,[1,mid]之间与m互质的数的数量 = mid - (包含一个质因子的数的个数)

Codeforces 920G(二分+容斥)

题意: 定义F(x,p)表示的是一个数列{y},其中gcd(y,p)=1且y>x 给出x,p,k,求出F(x,p)的第k项 x,p,k<=10^6 分析: 很容易想到先二分,再做差 然后问题就变成了[1,x]内有多少个数是和p互质的 我们可以先将p质因数分解,然后用这些数组合去在[1,x]容斥就行了 1 long long cal(long long x) 2 { 3 int n=f.size(); 4 long long ans=0; 5 for(int i=0;i<(1<<

bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方案数: 我们希望得到恰好有一个连通块的方案数,但这里不能直接 \( + t[1] - t[2] + t[3] - t[4] ... \),因为每个"恰好 \( i \) 个连通块"的情况并不是在各种 \( t[j] ( j<=i ) \) 中只被算了一次,而是因为标号,被算了 \(

【bzoj4671】异或图(容斥+斯特林反演+线性基)

传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: 直接考虑判断图的连通不好判断,所以考虑枚举连通块来进行容斥. 定义\(f_i\)表示有\(i\)个连通块的答案,发现连通块这个东西也不好处理,我们只能处理出有多少个连通块,但无法确定每个连通块内部的连通关系. 定义\(g_i\)为至少有\(i\)个连通块的方案数,那么就有关系式:\(\displaystyle