Jackson - Quickstart

JSON Three Ways

Jackson offers three alternative methods (one with two variants) for processing JSON:

  • Streaming API (aka "Incremental parsing/generation") reads and writes JSON content as discrete events.

  • Tree Model provides a mutable in-memory tree representation of a JSON document.
    • org.codehaus.jackson.map.ObjectMapper can build trees; trees consist of JsonNode nodes.
    • The tree model is similar to the XML DOM.
  • Data Binding converts JSON to and from POJOs based either on property accessor conventions or annotations.
    • There are two variantssimple and full data binding

      • Simple data binding means converting to and from Java Maps, Lists, Strings, Numbers, Booleans and nulls
      • Full data binding means converting to and from any Java bean type (as well as "simple" types mentioned above)
    • org.codehaus.jackson.map.ObjectMapper performs the marshalling (writing JSON) and unmarshalling (reading JSON) for both variants.
    • Inspired by the annotation-based (code-first) variant of JAXB.

From usage perspective, one way to summarize these 3 methods is:

Given these properties, let‘s consider these in the reverse order, starting with what is usually the most natural and convenient method for Java developers: Jackson Data Binding API.

Examples

Full Data Binding (POJO) Example

Jackson‘s org.codehaus.jackson.map.ObjectMapper "just works" for mapping JSON data into plain old Java objects ("POJOs"). For example, given JSON data

{
  "name" : { "first" : "Joe", "last" : "Sixpack" },
  "gender" : "MALE",
  "verified" : false,
  "userImage" : "Rm9vYmFyIQ=="
}

It takes two lines of Java to turn it into a User instance:

ObjectMapper mapper = new ObjectMapper(); // can reuse, share globally
User user = mapper.readValue(new File("user.json"), User.class);

Where the User class looks something like this:

public class User {
    public enum Gender { MALE, FEMALE };

    public static class Name {
      private String _first, _last;

      public String getFirst() { return _first; }
      public String getLast() { return _last; }

      public void setFirst(String s) { _first = s; }
      public void setLast(String s) { _last = s; }
    }

    private Gender _gender;
    private Name _name;
    private boolean _isVerified;
    private byte[] _userImage;

    public Name getName() { return _name; }
    public boolean isVerified() { return _isVerified; }
    public Gender getGender() { return _gender; }
    public byte[] getUserImage() { return _userImage; }

    public void setName(Name n) { _name = n; }
    public void setVerified(boolean b) { _isVerified = b; }
    public void setGender(Gender g) { _gender = g; }
    public void setUserImage(byte[] b) { _userImage = b; }
}

Marshalling back to JSON is similarly straightforward:

mapper.writeValue(new File("user-modified.json"), user);

For fancier data binding (e.g., unmarshalling formatted dates into java.util.Date), Jackson provides annotations to customize the marshalling and unmarshalling process.

"Raw" Data Binding Example

(also known as "Untyped", or sometimes "simple" data binding)

In cases where you do not have (and don‘t want to create) specific Java classes to bind JSON to/from, "Untyped data binding" may be a better approach. It is used same way as full data binding, except that the formal binding type is specified simply as Object.class (or Map.classList.classString[].class if more specific typing is wanted). So the earlier binding of JSON that represent User data could have been done by:

Map<String,Object> userData = mapper.readValue(new File("user.json"), Map.class);

and userData would be like one we would explicit construct by:

Map<String,Object> userData = new HashMap<String,Object>();
Map<String,String> nameStruct = new HashMap<String,String>();
nameStruct.put("first", "Joe");
nameStruct.put("last", "Sixpack");
userData.put("name", nameStruct);
userData.put("gender", "MALE");
userData.put("verified", Boolean.FALSE);
userData.put("userImage", "Rm9vYmFyIQ==");

This obviously works both ways: if you did construct such a Map (or bind from JSON and modify), you could write out just as before, by:

mapper.writeValue(new File("user-modified.json"), userData);

How does this work? By specifying Map.class, we do not specify generic key/value types. But ObjectMapper does know how to bind JSON data to and from Maps (and Lists, arrays, wrapper types), and does just that. Fundamentally JSON data has no "real" type as far as Jackson is concerned -- if it can be properly mapped to a type you give, it will be mapped.

Concrete Java types that Jackson will use for simple data binding are:

 JSON Type  Java Type
 object  LinkedHashMap<String,Object>
 array  ArrayList<Object> 
 string  String
 number (no fraction )  IntegerLong or BigInteger (smallest applicable)
 number (fraction)  Double (configurable to use BigDecimal)
 true|false  Boolean
 null  null

Data Binding with Generics

In addition to binding to POJOs and "simple" types, there is one additional variant: that of binding to generic (typed) containers. This case requires special handling due to so-called Type Erasure (used by Java to implement generics in somewhat backwards compatible way), which prevents you from using something like Collection<String>.class (which does not compile).

So if you want to bind data into a Map<String,User> you will need to use:

Map<String,User> result = mapper.readValue(src, new TypeReference<Map<String,User>>() { });

where TypeReference is only needed to pass generic type definition (via anynomous inner class in this case): the important part is <Map<String,User>> which defines type to bind to.

If you don‘t do this (and just pass Map.class), call is equivalent to binding to Map<?,?> (i.e. "untyped" Map), as explained above.

UPDATE: As an alternative, version 1.3 also allows programmatic construction of types by using TypeFactory.

Tree Model Example

Yet another way to get Objects out of JSON is to build a tree. This is similar to DOM trees for XML. The way Jackson builds trees is to use basic JsonNode base class, which exposes read access that is usually needed. Actual node types used are sub-classes; but the sub-type only needs to be used when modifying trees.

Trees can be read and written using either Streaming API (see below), or using ObjectMapper.

With ObjectMapper, you will do something like:

ObjectMapper m = new ObjectMapper();
// can either use mapper.readTree(source), or mapper.readValue(source, JsonNode.class);
JsonNode rootNode = m.readTree(new File("user.json"));
// ensure that "last name" isn‘t "Xmler"; if is, change to "Jsoner"
JsonNode nameNode = rootNode.path("name");
String lastName = nameNode.path("last").getTextValue().
if ("xmler".equalsIgnoreCase(lastName)) {
  ((ObjectNode)nameNode).put("last", "Jsoner");
}
// and write it out:
m.writeValue(new File("user-modified.json"), rootNode);

Or if you want to construct a Tree (for the User example) from scratch, you can do:

TreeMapper treeMapper = new TreeMapper();
ObjectNode userOb = treeMapper.objectNode();
Object nameOb = userRoot.putObject("name");
nameOb.put("first", "Joe");
nameOb.put("last", "Sixpack");
userOb.put("gender", User.Gender.MALE.toString());
userOb.put("verified", false);
byte[] imageData = getImageData(); // or wherever it comes from
userOb.put("userImage", imageData);

(NOTE: with Jackson 1.2 you can use ObjectMapper directly, using ObjectMapper.createObjectNode() to create userOb -- above example will work with JAckson 1.0 and 1.1)

Streaming API Example

And finally, there is the third way: turbo-charged, high-performance method known as Streaming API (aka incremental mode, since content is read and written incrementally).

Just for fun, let‘s implement the writing functionality (equivalent to earlier examples) using "raw" Streaming API: WriteJSON.java

JsonFactory f = new JsonFactory();
JsonGenerator g = f.createJsonGenerator(new File("user.json"));

g.writeStartObject();
g.writeObjectFieldStart("name");
g.writeStringField("first", "Joe");
g.writeStringField("last", "Sixpack");
g.writeEndObject(); // for field ‘name‘
g.writeStringField("gender", Gender.MALE);
g.writeBooleanField("verified", false);
g.writeFieldName("userImage"); // no ‘writeBinaryField‘ (yet?)
byte[] binaryData = ...;
g.writeBinary(binaryData);
g.writeEndObject();
g.close(); // important: will force flushing of output, close underlying output stream

Not horribly bad (esp. compared to amount of work needed for writing, say, equivalent XML content), but certainly more laborious than basic Object mapping.

On the other hand, you do have full control over each and every detail. And overhead is minimal: this is still a bit faster than using ObjectMapper; not a whole lot (perhaps 20-30% faster in common cases), but still. And perhaps most importantly, output is done in streaming manner: except for some buffering, all content will be written out right away. This means that memory usage is also minimal.

How about parsing, then? Code could look something like:

JsonFactory f = new JsonFactory();
JsonParser jp = f.createJsonParser(new File("user.json"));
User user = new User();
jp.nextToken(); // will return JsonToken.START_OBJECT (verify?)
while (jp.nextToken() != JsonToken.END_OBJECT) {
  String fieldname = jp.getCurrentName();
  jp.nextToken(); // move to value, or START_OBJECT/START_ARRAY
  if ("name".equals(fieldname)) { // contains an object
    Name name = new Name();
    while (jp.nextToken() != JsonToken.END_OBJECT) {
      String namefield = jp.getCurrentName();
      jp.nextToken(); // move to value
      if ("first".equals(namefield)) {
        name.setFirst(jp.getText());
      } else if ("last".equals(namefield)) {
        name.setLast(jp.getText());
      } else {
        throw new IllegalStateException("Unrecognized field ‘"+fieldname+"‘!");
      }
    }
    user.setName(name);
  } else if ("gender".equals(fieldname)) {
    user.setGender(User.Gender.valueOf(jp.getText()));
  } else if ("verified".equals(fieldname)) {
    user.setVerified(jp.getCurrentToken() == JsonToken.VALUE_TRUE);
  } else if ("userImage".equals(fieldname)) {
    user.setUserImage(jp.getBinaryValue());
  } else {
    throw new IllegalStateException("Unrecognized field ‘"+fieldname+"‘!");
  }
}
jp.close(); // ensure resources get cleaned up timely and properly

which is quite a bit more than you‘ll use with data binding.

One final trick: it is also possible to use data binding and tree model directly from JsonParser and JsonGenerator. To do this, have a look at methods:

  • JsonParser.readValueAs()
  • JsonParser.readValueAsTree()
  • JsonGenerator.writeObject()
  • JsonGenerator.writeTree()

which do about what you might expect them to do.

The only (?) trick is that you MUST make sure you use org.codehaus.jackson.map.MappingJsonFactory for constructing "data-binding capable" parser and generator instances (instead of basic org.codehaus.jackson.JsonFactory).

Streaming API Example 2: arrays

Let‘s consider following POJO:

public class Foo {
    public String foo;
}

and sample JSON stream of:

String json = [{\"foo\": \"bar\"},{\"foo\": \"biz\"}]";

while there are convenient ways to work on this with databinding (see ObjectReader.readValues() for details), you can easily use streaming to iterate over stream, bind individual elements as well:

JsonFactory f = new JsonFactory();
JsonParser jp = f.createJsonParser(json);
// advance stream to START_ARRAY first:
jp.nextToken();
// and then each time, advance to opening START_OBJECT
while (jp.nextToken() == JsonToken.START_OBJECT) {
    Foo foobar = mapper.readValue(jp, Foo.class);
    // process
    // after binding, stream points to closing END_OBJECT
}

Next Steps

You may want to check out rest of JacksonDocumentation for more inspiration.

时间: 2024-10-09 06:29:52

Jackson - Quickstart的相关文章

java.lang.ClassNotFoundException: org.codehaus.jackson.JsonProcessingException 异常解决方案

问题: 在SpringMVC中使用Jackson实现json输出时配置如下: <!-- 输出对象转JSON支持 --> <bean id="stringConverter" class="org.springframework.http.converter.StringHttpMessageConverter"> <property name="supportedMediaTypes"> <list>

at com.fasterxml.jackson.databind.ser.std.BeanSerializerBase.serializeFields异常

at com.fasterxml.jackson.databind.ser.std.BeanSerializerBase.serializeFields(BeanSerializerBase.java:666) at com.fasterxml.jackson.databind.ser.BeanSerializer.serialize(BeanSerializer.java:156) at com.fasterxml.jackson.databind.ser.impl.IndexedListSe

使用Jackson操作Json

1.引入jasckson-core.jar,jackson-annotations.jar和jackson-databind.jar 2.因为没有做从http获取和提交json数据,所以做个数据类代替 1 class WxJson { 2 public String getAccess_token() { 3 return access_token; 4 } 5 6 public void setAccess_token(String access_token) { 7 this.access_

50.RocketMQ (quickstart)

1.订阅消息 /** * Copyright (C) 2010-2013 Alibaba Group Holding Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at *

Jackson 框架,轻易转换JSON

Jackson 框架,轻易转换JSON Jackson可以轻松的将Java对象转换成json对象和xml文档,同样也可以将json.xml转换成Java对象. 前面有介绍过json-lib这个框架,在线博文:http://www.cnblogs.com/hoojo/archive/2011/04/21/2023805.html 相比json-lib框架,Jackson所依赖的jar包较少,简单易用并且性能也要相对高些.而且Jackson社区相对比较活跃,更新速度也比较快. 一.准备工作 1. 下

Jackson将json字符串转换成泛型List

转:http://www.cnblogs.com/quanyongan/archive/2013/04/16/3024993.html Jackson,我感觉是在Java与Json之间相互转换的最快速的框架,当然Google的Gson也很不错,但是参照网上有人的性能测试,看起来还是Jackson比较快一点 Jackson处理一般的JavaBean和Json之间的转换只要使用ObjectMapper 对象的readValue和writeValueAsString两个方法就能实现.但是如果要转换复杂

Jackson学习资料

Jackson JSON Processor Wiki Documentation for the Jackson JSON processor

Dubbo Jackson序列化使用说明

Jackson序列化提供了对基本数据类型和简单Bean的序列化的支持, 以及对类继承的支持. 已经经过测试的数据类型包括: Boolean/boolean Long/long Integer/int Double/double Short/short Float/float Byte/byte java.util.Date org.joda.time.DateTime 以及由这些基本数据类型组成的数组和Bean, 如 int[], String[]等. jackson序列化使用 <dubbo:p

Jackson高并发情况下,产生阻塞

情况:在高并发情况下,查看线程栈信息,有大量的线程BLOCKED. 从线程栈得知,线程栈中出现了阻塞,锁在了com.fasterxml.jackson.databind.ser.SerializerCache.untypedValueSerializer(SerializerCache.java:74)上. 1 "catalina-exec-1453" #1525 daemon prio=5 os_prio=0 tid=0x00007f1010098800 nid=0x2675 wai