T106021 【模板】乘法逆元(快速幂)

题目地址



注意点:

  • 使用exgcd求乘法逆元需额外进行(相对)较多操作,建议使用快速幂求乘法逆元.

#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
int n,p;
int poww(int a,int b){
	ll ans=1,tmp=a;
	while(b){
		if(b&1){
			ans*=tmp;
			ans%=p;
		}
		tmp=tmp*tmp;
		tmp%=p;
		b>>=1;
	}
	return ans;
}
int main(){
	scanf("%d%d",&n,&p);
	for(int i=1;i<=n;i++){
		ll ans=poww(i,p-2);
		cout<<ans<<endl;
	}
	return 0;
}

原文地址:https://www.cnblogs.com/zbsy-wwx/p/11761399.html

时间: 2024-11-09 02:38:06

T106021 【模板】乘法逆元(快速幂)的相关文章

POJ1845 Sumdiv - 乘法逆元+快速幂【A^B的约数个数和】

POJ1845 Sumdiv Sol: 约数个数和\(sumdiv=(1+p_1+p_1^2+\dots + p_1^{c_1})*\dots *(1+p_k+p_k^2+\dots + p_k^{c_k})\) 其中每一项都是一个首项为1,公比为\(p_i\)的等比数列的和,即 \(1*\frac{1-p_i^{c_{k}+1}}{1-p_i}=\frac{p_i^{c_{k}+1}-1}{p_i-1}\) 可以通过快速幂+逆元求解. 然而,当\(9901|(p_i-1)\)时,\(p_i-1

51 Nod 1013 3的幂的和 矩阵链乘法||逆元+快速幂

这道题我写了两种写法 一种利用逆元 a/b%mod=a*c%mod; (c是b的逆元)易得2的逆元就是5~~~04: 一种是矩阵快速幂 利用递推式得出结论 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int mod=1000000007; int read(){ int ans=0,f=1,c=getchar(); while(c<'0'||c&

乘法逆元+快速幂

唉... 1 #include <iostream> 2 #include <string.h> 3 #include <cstdio> 4 #include <queue> 5 #include <map> 6 #include <vector> 7 #include <string> 8 #include <cstring> 9 #include <algorithm> 10 #include

矩阵乘法 洛谷 P3390【模板】矩阵快速幂

P3390 [模板]矩阵快速幂 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂

快速乘法(基于快速幂)

快速乘法的思想和快速幂的思想一样,快速幂是求一个数的高次幂,快速乘法是求两个数相乘,什么时候才用得到快速乘法呢,当两个数相称可能超过long long 范围的时候用,因为在加法运算的时候不会超,而且可以直接取模,这样就会保证数据超不了了.具体拿一个BestCoder的题目来示例.题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5187 这个题先找规律,然后在求快速乘法和快速幂结合起来.题目推出来通式是:2n-2 推的过程就是一共有四种情况: 升升,升

POJ 2447 RSA 大数分解+逆元+快速幂

链接:http://poj.org/problem?id=2447 题意: 思路:Pollard_Rho质数分解,得到两个素数因子,P,Q,求出T,E,快速幂即可得M. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <map> #include <cstdlib> #include <queue>

2014 Super Training #7 F Power of Fibonacci --数学+逆元+快速幂

原题:ZOJ 3774  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3774 ---------------------------------------------------------------------------------------------------------------------- 这题比较复杂,看这篇比较详细:http://blog.csdn.net/acdreamers/artic

HDU 4965 Fast Matrix Caculation ( 矩阵乘法 + 矩阵快速幂 + 矩阵乘法的结合律 )

HDU 4965 Fast Matrix Calculation ( 矩阵乘法 + 矩阵快速幂 + 矩阵乘法的结合律 ) #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define MAX_SIZE 1001 #define CLR( a, b ) memset( a, b, sizeof(a) ) #define MOD 6 typedef long lo

poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)

Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7825   Accepted: 3068 Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout

[模板]乘法逆元

本博客所有代码基于题目 luogu_P3811 逆元: 一般用于求 (a/b) mod p  定义: 若 a*x ≡ 1 (mod p) ,且 a 与 p 互质,那么我们就能定义: x 为 a 的逆元,记为 a^-1 ,所以我们也可以称 x 为 a 的倒数(mod p意义下). 所以对于 (a/b) mod p ,我们就可以求出 b 在 mod p 意义下的逆元,然后乘上 a ,再 mod p ,就是这个乘法逆元的值了. 求法: First:费马小定理 定理内容:如果 a , p 互质,那么 a