跨时钟域的寄存器访问

在verilog中,如果对于一个寄存器可能同时有两个时钟clk对其进行操作,为了防止读写冲突,需要做如下简单处理

clk_f( fast时钟)和clk_s(slow时钟)

clk_s对寄存器time_cnt进行写操作,

clk_f对寄存器time_cnt进行读操作,

所以当clk_f边沿读取time_cnt的值得时候,time_cnt可能正是clk_s对寄存器写的时候,从而造成clk_f读错误

如下处理

reg time_cnt1,time_cnt2;

always @(posedge clk_f)

begin

time_cnt1<=time_cnt;

time_cnt2<=time_cnt;

end

always @(posedge clk_f)

if(time_cnt1==time_cnt2)

time_cnt_f<=time_cnt1;

else

time_cnt_f<=time_cnt_f;

time_cnt_f为最终读取的时间值

跨时钟域的寄存器访问,布布扣,bubuko.com

时间: 2024-10-05 00:06:23

跨时钟域的寄存器访问的相关文章

基于FPGA的跨时钟域信号处理——亚稳态(V3-FPGA学院)

(V3-FPGA学院教你学习FPGA) 基于FPGA的跨时钟域信号处理--亚稳态 基于FPGA的跨时钟域信号处理--亚稳态 什么是亚稳态? 所有数字器件(例如FPGA)的信号传输都会有一定的时序要求,从而保证每 个寄存器将捕获的输入信号正确输出.为了确保可靠的操作,输入寄存器的信号必须在时钟沿的某段时间(寄存器的建立时间Tsu)之前保持稳定,并且持续到时钟沿之后的某段时间(寄存器的保持时间Th)之后才能改变.而该寄存器的输入反映到输出则需要经过一定的延时(时钟到输出的时间Tco).如果数据信号的

数字IC学习之五(综合、SVA以及跨时钟域设计)

我们来说说综合,通常意义上的综合指的是,将RTL风格的描述转化为逻辑网标,通俗点说,就是把你的代码转化成真实的电路,我们以EDA工具Design Compiler为例来说说如何进行综合,对于综合我推荐的资料为<Design Compiler User Guide>(synopsys)(书1),<Optimization Reference Manual>(synopsys)(书2),<高级ASIC芯片综合>(书3),<专用集成电路设计实用教程>(虞)(书4)

cdc跨时钟域处理-结绳握手法

参考文档 https://blog.csdn.net/u011412586/article/details/10009761 前言 对于信号需要跨时钟域处理而言,最重要的就是确保数据能稳定的传送到采样时钟域. 普通的cdc处理方法需要关注时钟域速度的异同,即分慢时钟域到快时钟域.快时钟域到慢时钟域.相位关系等问题,会让人瞬间爆炸. 那么,是否有一种相对稳定,又无需关注传送时钟域和接收时钟域两者时钟速度.相位关系的数据传递方式呢? 这里仿真验证握手结绳法,自己想的,不知道跟结绳法是不是一致的...

跨时钟域信号处理

1.什么是跨时钟域? 如图所示: 缺点:数据传输不可靠 2.如何实现信号传输稳定? 设计最基本的思想就是同步. 看两篇文章:<(多图) 跨越鸿沟:同步世界中的异步信号>.<cpu与fpga跨时钟域数据交换的实现问题>

FPGA中亚稳态相关问题及跨时钟域处理

前言 触发器输入端口的数据在时间窗口内发生变化,会导致时序违例.触发器的输出在一段时间内徘徊在一个中间电平,既不是0也不是1.这段时间称为决断时间(resolution time).经过resolution time之后Q端将稳定到0或1上,但是稳定到0或者1,是随机的,与输入没有必然的关系. 触发器由于物理工艺原因,数据并不是理想化的只要触发沿时刻不变即可.触发器有固定的建立时间,保持时间. 建立时间:在时钟有效沿到来前数据需要稳定的时间. 保持时间:在时钟有效沿之后数据还需要保持不变的时间.

跨时钟域设计【二】——Fast to slow clock domain

跨时钟域设计中,对快时钟域的Trigger信号同步到慢时钟域,可以采用上面的电路实现,Verilog HDL设计如下:   // Trigger signal sync, Fast clock domain to slow domainmodule Trig_CrossDomain_F2S ( input clkB, input rst_n, input TrigIn_clkA,  output  reg TrigOut_clkB );  reg Q1,Q2,nQ2;  always @(pos

跨时钟域设计【一】——Slow to fast clock domain

跨时钟域设计是FPGA设计中经常遇到的问题,特别是对Trigger信号进行同步设计,往往需要把慢时钟域的Trigger信号同步到快时钟域下,下面是我工作中用到的慢时钟域到快时钟域的Verilog HDL设计.     // Trigger Cross Domain Design, Slow to fast clock domain  module Trig_ CrossDomain _S2F (      input clkB,      input rst_n,      input Trig

跨时钟域信号处理——专用握手信号

在逻辑设计领域,只涉及单个时钟域的设计并不多.尤其对于一些复杂的应用,FPGA往往需要和多个时钟域的信号进行通信.异步时钟域所涉及的两个时钟之间可能存在相位差,也可能没有任何频率关系,即通常所说的不同频不同相. 图1是一个跨时钟域的异步通信实例,发送域和接收域的时钟分别是clk_a和clk_b.这两个时钟频率不同,并且存在一定的相位差.对于接收时钟域而言,来自发送时钟域的信号data_a2b有可能在任何时刻变化. 图1 跨时钟域通信 对于上述的异步时钟域通信,设计者需要做特殊的处理以确保数据可靠

FPGA中信号的跨时钟域处理模板(一)

在做项目的时,我们经常会使用到多个时钟.每一个时钟在FPGA内部都会形成一个时钟域,如果一个时钟域中要用到另外一个时钟域的信号,也就形成了跨时钟域的操作,这时候要格外小心. 一.实际使用背景       假设在项目中需要在clk_b时钟域中用到用到来自clk_a中的信号.那么此信号就需要从clk_a时钟域跨越到clk_b中因此我们要建立一个同步计数器,该设计器从clk_a 中获取信号,然后再clk_b中创建一个新的信号.并从作为输出.模型如下: 在此设计中.我们假设输入的信号与clk_a和clk