【线性代数】方程组的几何解释

一、二维情况

首先,给出如下的二元一次方程组:

我们初中就对上面的二元一次方程组进行过求解,求解很简单。但是我们现在利用线性代数来表示这个式子,上式可以表示为:

我们这里假设用小写字母表示向量,大写字母表示矩阵。上面可以二元一次方程组便转化为求解x,y。下面我们从几种不同的角度来求解上面的方程组:

1、从行的角度看,也就是画出上面两个方程的图像:

很明显的可以看出方程的解是x=1,y=2。

2、从列的角度看方程组可以表现为列的线性组合

令向量a=[2 -1]‘,b=[-1 2]‘,c=[0 3]‘,则问题变为找到适当的x,y将向量a b 进行线性组合得到向量c。同样我们可以通过作图求解:

从上图可以看到(2,-1)+2(-1,2)=(0,3),从而得到x=1,y=2。

二、三维情况

上面的问题都是在二维平面上进行求解的,下面来看看三维下的情况:首先,给出三元一次方程组:

同样可以得到其矩阵的表示形式:

还是按照上面的方法分析:

1、从行的角度看,也就是画出上面三个方程的图像(在这里变成了三维空间的平面):

上图的matlab代码为:

figure
t=-10:.1:10;
[x,z]=meshgrid(t);
y=2*x;
mesh(x,y,z);
hold on
y=(x+z-1)/2;
mesh(x,y,z)
hold on
y=-(4-4*z)/3;
mesh(x,y,z)

然后人工进行一些修正即可

从图中可以看出,三个平面交于一点(0 0 1)也就是方程组的解:x=0 y=0 z=1。

2、同样从列的角度考虑该问题

不用通过计算或作图,我们从上式就可以轻易得到x=y=0 z=1,这比上面一种方法要简单得多。

画出上面四个列向量的图(其中后两个列向量相同(0 -1 4)‘):

上图的matlab代码为:

a=[2 -1 0];
b=[-1 2 3];
c=[0 -1 4];
quiver3(0,0,0,a(1),a(2),a(3),'color','r')
hold on
quiver3(0,0,0,b(1),b(2),b(3),'color','g')
hold on
quiver3(0,0,0,c(1),c(2),c(3),'color','b')

然后人工标上箭头,当然也可以通过命令标上箭头。

时间: 2024-08-25 18:55:57

【线性代数】方程组的几何解释的相关文章

Duanxx的数学知识:线性代数 方程组的几何解释 lecture-1-the-geometry-of-linear-equations

线性代数导论1——方程组的几何解释

本文是Gilbert Strang的线性代数导论课程笔记.课程地址:http://v.163.com/special/opencourse/daishu.html 第一课时:方程组的几何解释   一.线性方程组的两种理解方式:行图像和列图像 对于方程组: 我们可以表示成矩阵形式: 系数矩阵A,未知数向量x,右侧向量为b,则可写成 Ax=b 1)行图像的理解方式:试图将每一个完整方程所表示的图像表示出来. 交点即方程的解为(1,2). 2)列图像的理解方式:关注矩阵的列所表示的向量,把两个方程组放

第一节、方程组的几何解释

一.线性方程组 啥是方程组?把一堆方程放在一起就是方程组.比如:  是方程组,也是方程组.相关概念就不多叙述了,如有需要请自行百度. 另外说说线性,所谓线性,就是指量与量之间按比例.成直线的关系.换句话说,线性代数里研究的所有变量都是一次的,所以千万不要在这里脑抽问遇到x2+y=1咋办啊之类的问题呦.至于线性方程的其他性质,自行百度. 二.方程组的矩阵表示 (1)先以两方程两未知数的举例: 现在有一个方程组   我们把变量的系数单独拿出,得到这样的一个矩阵 (没错,介货就是矩阵,可以看出它的数字

线性代数:方程组的几何解释

感谢笛卡尔让代数和几何结合起来. 大学的时候讲矩阵感觉就是突然进入一个新的世界,和以前的世界没有任何的联系,我认为任何的新知识如果不能用旧的知识去引导,去结合,那么这个知识一定难以理解.感谢Gilbert Strang以一种循序渐进的讲课方式把线性方程组和矩阵进行了结合. 线性方程组忘记是哪个阶段的知识了,才开始是使用消元法进行解方程组,后来使用几何的方式来表示这种方式.就是在笛卡尔坐标系上划线,这应该是初中知识,当然也会划曲线和直线的交叉,这不是线性方程组的领域了,参考百度百科线性方程的解释,

线性代数导论35——线性代数全总结(麻省理工公开课:线性代数)

课程介绍 "线性代数",同微积分一样,是高等数学中两大入门课程之一,不仅是一门非常好的数学课程,也是一门非常好的工具学科,在很多领域都有广泛的用途.本课程讲述了矩阵理论及线性代数的基本知识,侧重于那些与其他学科相关的内容,包括方程组.向量空间.行列式.特征值.相似矩阵及正定矩阵. [第1集] 方程组的几何解释    [第2集] 矩阵消元    [第3集] 乘法和逆矩阵    [第4集] A的LU分解    [第5集] 转置-置换-向量空间R    [第6集] 列空间和零空间    [第

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题.不过我想顺便多学习一些有关 SVD 的知识.所以就没直接使用 gsl_fit_linear 函数. SVD

认识数学各个分支

数论 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0.它们和起来叫做整数. 对于整数可以施行加.减.乘.除四种运算,叫做四则运算.其中加法.减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行.也就是说,任意两个或两个以上的整数相加.相减.相乘的时候,它们的和.差.积仍然是一个整数.但整数之间的除法在整数范围内并不一定能够无阻碍地进行. 人们在对整数进行运算的应用和研究中,逐步

机器学习知识体系 - 神经网络(基础)

转载:http://www.jianshu.com/p/a3b89d79f325 引言本系列是本人第一次在简书写东西,想将手头上正在学的神经网络归纳整理,尽量详细地介绍神经网络的结构.计算公式与C语言实现.文中内容基本参考消化了计算机的潜意识的博文,文中图片基本来自他的博文和Ng老师的课件,所用的符号和上下标与Ng老师的一致,在此感谢. 神经网络结构 说到神经网络,对神经网络有概念的人第一个冒出来的肯定是下面这幅图,这是最基本的3层神经网络,图中圆圈标识神经元,有输入层.1层隐藏层.输出层.输入

第0周 数学基础,什么是电路

前言:老师推荐了好多网上课程,其中最爱电路.回家后,寒假生活在忙碌中稳定下来,开始每天的学习积累. 前不久试看了清华大学的MOOC<电路原理>,大呼过瘾!学习知识未曾有过的条理和简单! 该课程特点总结如下: ·知识高度总结,简练: ·概念解释地简单直白,举例说明: ·课件多用图示,少文字,符合记忆特点: ·充分考虑学生学习过程中的问题. 知识梳理: 第0讲 数学基础知识 ·微积分 积分--累积效应,微分--变化率. ·线性代数: 线性判断依据:齐次性,可加性. 矩阵:对线性代数或微分方程组的规