NLP文本分类方法汇总

模型:

  • FastText
  • TextCNN
  • TextRNN
  • RCNN
  • 分层注意网络(Hierarchical Attention Network)
  • 具有注意的seq2seq模型(seq2seq with attention)
  • Transformer("Attend Is All You Need")
  • 动态记忆网络(Dynamic Memory Network)
  • 实体网络:追踪世界的状态

参考文献:

【1】用深度学习进行NLP文本分类的方法

原文地址:https://www.cnblogs.com/nxf-rabbit75/p/10861419.html

时间: 2024-10-12 13:32:36

NLP文本分类方法汇总的相关文章

tensorflow实现基于LSTM的文本分类方法

tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下 模型说明 这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图  简单解释一下这个图

广告行业中那些趣事系列2:BERT实战NLP文本分类任务(附github源码)

摘要:上一篇广告中那些趣事系列1:广告统一兴趣建模流程,我们了解了如何为广告主圈人群以及如何刻画用户的兴趣度.要想给用户打标签,我们需要构建数据源和标签的关联,也就是item-tag.针对数量较少的app数据源我们可以使用人工打标的方式来识别,但是对于news.用户query等数量较多的数据源则需要通过机器学习模型来进行打标.实际项目中我们使用NLP中鼎鼎大名的BERT模型来进行文本分类. 通过本篇学习,小伙伴们可以迅速上手BERT模型用于文本分类任务.对数据挖掘.数据分析和自然语言处理感兴趣的

文本分类:survey

作者:尘心链接:https://zhuanlan.zhihu.com/p/76003775 简述 文本分类在文本处理中是很重要的一个模块,它的应用也非常广泛,比如:垃圾过滤,新闻分类,词性标注等等.它和其他的分类没有本质的区别,核心方法为首先提取分类数据的特征,然后选择最优的匹配,从而分类.但是文本也有自己的特点,根据文本的特点,文本分类的一般流程为:1.预处理:2.文本表示及特征选择:3.构造分类器:4.分类. 通常来讲,文本分类任务是指在给定的分类体系中,将文本指定分到某个或某几个类别中.被

中文文本分类

本文介绍文本挖掘与文本分类的一些基本概念和流程,为后续学习分类算法做好铺垫. 一. 文本挖掘的概念 文本挖掘(Text Mining)是从非结构化文本信息中获取用户感兴趣或者有用的模式 的过程.其中被普遍认可的文本挖掘定义如下:文本挖掘是指从大量文本数据中抽取事先未知的.可理解的.最终可用的知识的过程,同时运用这些知识更好地组织信息以便将来参考. 简言之,文本挖掘就是从非结构化的文本中寻找知识的过程. 文本挖掘的七个主要领域: (1)搜索和信息检索(IR):存储和文本文档的检索,包括搜索引擎和关

用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

转自https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是"夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏".淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也

转:文本分类问题

作者:西瓜军团链接:https://www.zhihu.com/question/58863937/answer/166306236来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 一.传统文本分类方法 文本分类问题算是自然语言处理领域中一个非常经典的问题了,相关研究最早可以追溯到上世纪50年代,当时是通过专家规则(Pattern)进行分类,甚至在80年代初一度发展到利用知识工程建立专家系统,这样做的好处是短平快的解决top问题,但显然天花板非常低,不仅费时费力,覆

文本分类入门,推荐播客

http://www.blogjava.net/zhenandaci/ 推荐这个博客,博主真的很厉害,把基础的用到的文本分类方法都写上了! 比较推荐的文章: 文本分类入门(十)特征选择算法之开方检验 文本分类入门(番外篇)特征选择与特征权重计算的区别 其他都同样很好!! 文本分类入门,推荐播客

文本分类,数据挖掘和机器学习

转自:http://blog.chinaunix.net/uid-446337-id-94440.html 分类: 机器学习的有概率分类器(probabilistic) ,贝叶斯推理网络(bayesian inference networks) , 决策树分类器(decision tree) ,决策规则分类器(decision rule) ,基于回归的线性最小二乘llsf(regression based on linearleast squares fit ) , 符号规则归纳法( symbo

中文文本分类大概的步骤

文本分类问题:给定文档p(可能含有标题t),将文档分类为n个类别中的一个或多个 文本分类应用:常见的有垃圾邮件识别,情感分析 文本分类方向:主要有二分类,多分类,多标签分类 文本分类方法:传统机器学习方法(贝叶斯,svm等),深度学习方法(fastText,TextCNN等) 文本分类的处理大致分为文本预处理.文本特征提取.分类模型构建等.和英文文本处理分类相比,中文文本的预处理是关键技术. 一.中文分词:针对中文文本分类时,很关键的一个技术就是中文分词.特征粒度为词粒度远远好于字粒度,其大部分