[Leetcode]700. Search in a Binary Search Tree

700. Search in a Binary Search Tree

  • 本题难度: Easy
  • Topic: Binary Tree

Description

Given the root node of a binary search tree (BST) and a value. You need to find the node in the BST that the node‘s value equals the given value. Return the subtree rooted with that node. If such node doesn‘t exist, you should return NULL.

For example,

Given the tree:

4

/
2 7

/
1 3

And the value to search: 2

You should return this subtree:

  2
 / \
1   3

In the example above, if we want to search the value 5, since there is no node with value 5, we should return NULL.

Note that an empty tree is represented by NULL, therefore you would see the expected output (serialized tree format) as [], not null.

我的代码

别人的代码

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def searchBST(self, root: ‘TreeNode‘, val: ‘int‘) -> ‘TreeNode‘:
        if root is None:
            return None
        if root.val == val:
            return root
        else:
            if root.val<val:
                return self.searchBST(root.right,val)
            else:
                return self.searchBST(root.left,val)

原文地址:https://www.cnblogs.com/siriusli/p/10380943.html

时间: 2024-10-18 22:15:09

[Leetcode]700. Search in a Binary Search Tree的相关文章

[leetcode]Convert Sorted List to Binary Search Tree @ Python

原题地址:http://oj.leetcode.com/problems/convert-sorted-list-to-binary-search-tree/ 题意:将一条排序好的链表转换为二叉查找树,二叉查找树需要平衡. 解题思路:两个思路:一,可以使用快慢指针来找到中间的那个节点,然后将这个节点作为树根,并分别递归这个节点左右两边的链表产生左右子树,这样的好处是不需要使用额外的空间,坏处是代码不够整洁.二,将排序好的链表的每个节点的值存入一个数组中,这样就和http://www.cnblog

[leetcode]Convert Sorted Array to Binary Search Tree @ Python

原题地址:http://oj.leetcode.com/problems/convert-sorted-array-to-binary-search-tree/ 题意:将一个排序好的数组转换为一颗二叉查找树,这颗二叉查找树要求是平衡的. 解题思路:由于要求二叉查找树是平衡的.所以我们可以选在数组的中间那个数当树根root,然后这个数左边的数组为左子树,右边的数组为右子树,分别递归产生左右子树就可以了. 代码: # Definition for a binary tree node # class

LeetCode: Convert Sorted List to Binary Search Tree [109]

[题目] Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. [题意] 将一个有序链表转换成平衡二叉树 [思路] 思路跟Convert Sorted Array to Binary Search Tree完全一样 [代码] /** * Definition for singly-linked list. * struct List

[LeetCode] Convert Sorted List to Binary Search Tree(分治)

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. 方法:为了使BST高度平衡,要找链表中的中值作为当前根节点. /** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) :

LeetCode: Convert Sorted Array to Binary Search Tree [108]

[题目] Given an array where elements are sorted in ascending order, convert it to a height balanced BST. [题意] 给定一个已排序的数组(不存在重复元素),将它转换成一棵平衡二叉搜索树. [思路] 由于平衡二叉树要求左右子树的高度差绝对值相遇等于1,也就是说左右子树尽可能包含相同数目节点. 则使用二分法来解本题即可. [代码] /** * Definition for binary tree *

PAT Search in a Binary Search Tree

Search in a Binary Search Tree To search a key in a binary search tree, we start from the root and move all the way down, choosing branches according to the comparison results of the keys. The searching path corresponds to a sequence of keys. For exa

04-树7. Search in a Binary Search Tree (25)

04-树7. Search in a Binary Search Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue To search a key in a binary search tree, we start from the root and move all the way down, choosing branches according to the comparison res

pat04-树7. Search in a Binary Search Tree (25)

04-树7. Search in a Binary Search Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue To search a key in a binary search tree, we start from the root and move all the way down, choosing branches according to the comparison res

[Algorithms] Refactor a Linear Search into a Binary Search with JavaScript

Binary search is an algorithm that accepts a sorted list and returns a search element from the list. It provides a dramatic performance boost over searching linearly through a list for an element. Let’s play around number of iterations required for e