泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle

Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle

Joshua Levin, Aditya Paranjape, and Meyer Nahon

小型特技飞行无人机的运动规划

https://pan.baidu.com/s/1xB6WxNMEo-SNAApsNT0GQQ

Abstract— A motion planner is developed for guiding a small aerobatic fixed-wing unmanned aerial vehicle to a desired goal region in a highly constrained, three-dimensional, known environment with static obstacles. The planner is based on the Rapidly-Exploring Random Trees (RRT) algorithm, and pieces together feasible trajectories from a library of motion primitives. Among other more conventional motion primitives,the library includes three extreme maneuvers: a cruise-to-hover transition, a hover-to-cruise transition, and an aggressive turn-around. The algorithm is efficient; it can be run in real-time to rapidly generate a plan starting from the aircraft’s configuration at run-time. The motion planner is closely coupled to a feedback controller. Simulations using an aircraft dynamics model demonstrate the effectiveness of the system to guide and control the aircraft to a desired goal region. Preliminary flight test results are also presented.

在本文中,我们开发了一种运动规划器,用于在具有静态障碍物的高度受限的三维已知环境中将小型特技飞行固定翼无人驾驶飞行器引导至期望目标区域。该规划器基于快速探索随机树(RRT)算法,并将来自运动图元库的可行轨迹拼接在一起。在其他更传统的运动图元中,该库包括三种极端机动:巡航到悬停过渡,悬停到巡航过渡以及积极的转向。该算法是高效的; 它可以实时运行,以便在运行时从飞机的配置开始快速生成规划。运动规划器与反馈控制器紧密耦合。使用飞机动力学模型的模拟证明了该系统将飞机引导和控制到期望目标区域的有效性。 初步的飞行测试结果也被提供了。

控制器的任务是跟踪运动规划。它接收树节点并参考运动图元库以将其数据解释为全状态时间相关轨迹和前馈控制输入。完整的控制系统将前馈输入与跟踪参考轨迹偏差的反馈控制法相结合。

三维运动规划跟踪

原文地址:https://www.cnblogs.com/feifanrensheng/p/10330789.html

时间: 2024-11-09 02:37:17

泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle的相关文章

泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions

张宁  Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重复任务执行学习不确定环境中的运动规划策略链接:https://pan.baidu.com/s/1TlSJn0fXuKEwZ9vts4xA6g 提取码:jwsd 复制这段内容后打开百度网盘手机App,操作更方便哦 Florence Tsang, Ryan A. Macdonald, and Steph

UPenn - Robotics 2:Computational Motion Planning - week 1:Introduction and Graph-based Plan Methods

          If you are really interested in the topic of computational motion planning in robotics, here are some related texts: Robot Motion Planning, Jean-Claude Latombe, Kluwer Academic Publishers, 1991. Principles of Robot Motion, H. Choset, K. M.

Grassfire算法- 运动规划(Motion planning)

我们的目标是:找到start-end之间的最短路径,如图所示.刷过leetcode的朋友看见这张应该会会心一笑,BFS,DFS这类词争先恐后往外跳.但是呢,太高级了,我的朋友们.让我们先用一种最文艺(傻气)的办法,来解决这个问题. Grassfire 算法.小时候,大家都背过一首诗:离离原上草,一岁一枯荣. 野火烧不尽,春风吹又生.说的就是这种算法.这首诗告诉我们,草,都是从旁边的草开始燃烧蔓延的!grassfire-烧草,就这么简单又有力. 参考:1)运动规划(Motion planning)

运动规划 (Motion Planning): MoveIt! 与 OMPL

原创博文:转载请标明出处:http://www.cnblogs.com/zxouxuewei 最近有不少人询问有关MoveIt!与OMPL相关的话题,但是大部分问题都集中于XXX功能怎么实现,XXX错误怎么解决.表面上看,解决这些问题的方法就是提供正确的代码,正确的编译方法,正确的运行步骤. 然而,这种解决方法只能解决这个特定的问题,而且解决之后我们也无法学到一些实际的东西.要想彻底明白,需要从源头入手,也就是说,不要问"MoveIt! 怎么把机械手从空间一个点移到另一个点?",而是要

UPenn - Robotics 2:Computational Motion Planning - week 4: Artificial Potential Field Methods

The basic idea here is to try to construct a smooth function over the extent of the configuration space, which has high values when the robot is near to an obstacle and lower values when it's further away. If we can construct such a function, we can

UPenn - Robotics 2:Computational Motion Planning - week 3: Probabilistic Road Maps

https://blog.csdn.net/DinnerHowe/article/details/80267062 1, initialize by random sampling PRM is not Not complete Edge case:  only probably complete, one stratety is to generate more samples between closed barriers.                           (PRM bu

泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合粒子滤波方法 Shuxia Gu, Zhiyu Xiang*, Yi Zhang and Qi Qian Abstract-Robust localization is a prerequisite for autonomous vehicles. Traditional visual locali

泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测量的加速度下降到与当前施加的推力相对应的值. B. Recovery and Initialization Steps 张宁    Perception-aware Receding Horizon Navigation for MAVs    "链接:https://pan.baidu.com/s

泡泡一分钟:Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System

Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System https://arxiv.org/abs/1809.05477 Abstract: Project AutoVision aims to develop localization and 3D scene perception capabilities for a self-