莫比乌斯函数与莫比乌斯反演

莫比乌斯函数

定义

莫比乌斯函数\(\mu(n)\),当\(n=1\)时,\(\mu(n)=1\);当\(n>1\)时,设\(n\)的唯一分解式为\(n=p_1^{c_1}\cdots p_k^{c_k}\),则\(\mu(n)\)定义为
\(\mu(n)= \begin{cases} (-1)^k,c_1=c_2=\cdots=c_k=1 \\ 0, \exists\, c_i>1(1\leq i\leq k)\\ \end{cases}\)

性质

  1. \(\sum\limits_{d|n}\mu(d)=[n=1]\)
    注:约定方括号[]中为一个命题,其结果为\(1\)(该命题为真),或为\(0\)(该命题为假)。例如\([p为质数]\)=\(\begin{cases} 1,p是质数 \\ 0,p不是质数 \\ \end{cases}\)
    证明:\(n=1\)时,显然成立;现设\(n>1\),\(n\)的唯一分解式为\(n=p_1^{c_1}\cdots p_k^{c_k}\),则
    \(\begin{aligned} \sum\limits_{d|n}\mu(d) =&\mu(1)+\mu(p_1)+\cdots+\mu(p_k)+\mu(p_1p_2)\\ &+\cdots +\mu(p_{k-1}p_k)+\cdots+\mu(p_1\cdots p_k)\\ =&1+\binom{k}{1}(-1)+\binom{k}{2}(-1)^2+\cdots+\binom{k}{k}(-1)^k\\ =&(1-1)^k=0 \end{aligned}\)
  2. \(\varphi(n)=\sum\limits_{d|n}\mu(d)\dfrac{n}{d}\)
    证明:
    因为\(\varphi(n)=n\left(1-\dfrac{1}{p_1}\right)\cdots\left(1-\dfrac{1}{p_k}\right)\),其中\(n=p_1^{c_1}\cdots p_k^{c_k}\)是\(n\)的标准分解式,利用\(\mu(n)\),可得\(\varphi(n)=\sum\limits_{d|n}\mu(d)\dfrac{n}{d}\)。

莫比乌斯反演

观察这两个等式
\(\qquad\qquad\qquad\begin{aligned} n&=\sum\limits_{d|n}\varphi(d)=\sum\limits_{d|n}\varphi\left(\dfrac{n}{d}\right)\\ \varphi(n)&=\sum\limits_{d|n}\mu(d)\dfrac{n}{d}=\sum\limits_{d|n}\mu\left(\dfrac{n}{d}\right)d\\ \end{aligned}\)
考虑将其推广至一般情况

莫比乌斯变换

对于数论函数\(f(n),g(n)\),若
\(\qquad\qquad \qquad\qquad f(n)=\sum\limits_{d|n}g(d)=\sum\limits_{d|n}g\left(\dfrac{n}{d}\right)\)
则称\(f(n)\)为\(g(n)\)的莫比乌斯变换,而\(g(n)\)为\(f(n)\)的莫比乌斯逆变换

反演公式

若有两个数论函数\(f(n),g(n)\)满足
\(\qquad \qquad \qquad \qquad f(n)=\sum\limits_{d|n}g(d)\qquad \qquad (1)\)
则有
\(\qquad \qquad \qquad \qquad g(n)=\sum\limits_{d|n}\mu(d)f\left(\dfrac{n}{d}\right) \qquad \qquad (2)\)
反过来,若满足\((2)\),则\((1)\)也成立。
证明: 若\(f(n),g(n)\)满足\((1)\),则
\(\qquad \qquad \begin{aligned} \sum\limits_{d|n}\mu(d)f\left(\dfrac{n}{d}\right)&=\sum\limits_{d|n}\mu(d)\sum\limits_{d'|\frac{n}{d}}g(d')\\ &=\sum\limits_{dd'|n}\mu(d)g(d')\\ &=\sum\limits_{d'|n}\sum\limits_{d|\frac{n}{d'}}\mu(d)g(d')\\ &=\sum\limits_{d'|n}g(d')\sum\limits_{d|\frac{n}{d'}}\mu(d)\\ &=g(n)\\ \end{aligned}\)
\(\qquad\)反过来,设\(f(n),g(n)\)满足\((2)\),同法可证
\(\qquad \qquad \begin{aligned} \sum\limits_{d|n}g(d)&=\sum\limits_{d|n}g\left(\dfrac{n}{d}\right)\\ &=\sum\limits_{d|n}\sum\limits_{d'|\frac{n}{d}}\mu\left(\dfrac{n}{dd'}\right)f(d')\\ &=\sum\limits_{dd'|n}\mu\left(\dfrac{n}{dd'}\right)f(d')\\ &=\sum\limits_{d'|n}f(d')\sum\limits_{d|\frac{n}{d'}}\mu\left(\dfrac{n}{dd'}\right)\\ &=f(n)\\ \end{aligned}\)

在OI中的应用

通常,在OI竞赛中,应用莫比乌斯反演的关键在于构造如下的式子
\(\qquad \qquad \qquad \qquad \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}f(\gcd(i,j))\)
其中\(f(n)\)是一个积性函数。
构造数论函数\(g(n)\)满足\(f(n)=\sum\limits_{d|n}g(d)\),
由莫比乌斯反演公式得\(g(n)=\sum\limits_{d|n}\mu(d)f\left(\dfrac{n}{d}\right)\)。
化简原式
\(\qquad \qquad \qquad \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}f(\gcd(i,j))=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{d|\gcd(i,j)}g(d)\)
因为\(d|\gcd(i,j)\Leftrightarrow d|i,d|j\),所以\(d\)必须是\(i,j\)的约数
考虑对每个\(d\),枚举\(d\)的倍数,接着化简
\(\qquad \qquad \qquad \begin{aligned} \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}f(\gcd(i,j))&=\sum\limits_{d=1}^{\min(n,m)}\sum\limits_{d|i}^n \sum\limits_{d|j}^mg(d)\\ &=\sum\limits_{d=1}^{\min(n,m)}\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor g(d) \end{aligned}\)
这样只需要枚举\(d\),就能求出\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}f(\gcd(i,j))\),时间复杂度为\(O(n)\)。
考虑\(\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\)可以使用数论分块,再预处理一下\(g(n)\)的前缀和,时间复杂度降至\(O(\sqrt n)\)。
至于\(g(n)\)的计算,因为\(g(n)=\sum\limits_{d|n}\mu(d)f\left(\dfrac{n}{d}\right)\),而\(f(n),\mu(n)\)为积性函数,所以\(g(n)\)也是积性函数。参考这篇博客,\(g(n)\)可以在线性时间内求出。

原文地址:https://www.cnblogs.com/yydyz/p/10447805.html

时间: 2024-10-14 12:42:30

莫比乌斯函数与莫比乌斯反演的相关文章

【读书笔记】莫比乌斯函数与莫比乌斯反演

一.莫比乌斯(Möbius)函数 对于每个正整数n(n ≥ 2),设它的质因数分解式为: 根据这个式子定义n的莫比乌斯函数为: 也就是如果n有平方因子,则为0. 否则是-1的质因数个数次方. 举个简单的例子:6 = 2 × 3,所以:  9 = 3×3, 所以 [命题一] 对于正整数n有: 也就是n>2时,所有n的约数对应函数值之和为0. 证明: n=1的时候是显然的. n≥2时: ① 如果d中也含有平方因子,则其值为零. ② 设 , 若d中不含平方因子,则必有. 所以有: 得证. 二.欧拉函数

线性筛+求莫比乌斯函数‘

莫比乌斯函数. 莫比乌斯函数是一个数论函数,它同时也是一个积性函数(i.e.μ(ab) =μ(a)μ(b), a,b互质) 当n不等于1时,n所有因子的莫比乌斯函数值的和为0, 莫比乌斯函数完整定义的通俗表达: 1)莫比乌斯函数μ(n)的定义域是N 2)μ(1)=1 3)当n存在平方因子时,μ(n)=0 4)当n是素数或奇数个不同素数之积时,μ(n)=-1 5)当n是偶数个不同素数之积时,μ(n)=1 code void get() { int n = 100; mu[1]=1; for(int

数论线性筛总结 (素数筛,欧拉函数筛,莫比乌斯函数筛,前n个数的约数个数筛)

线性筛 线性筛在数论中起着至关重要的作用,可以大大降低求解一些问题的时间复杂度,使用线性筛有个前提(除了素数筛)所求函数必须是数论上定义的积性函数,即对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数,若a,b不互质也满足的话则称作完全积性函数,下面说明每个筛子是怎么筛的. 最基础的是素数筛,其它三个筛都是以素数筛为前提 素数筛 void get_prime() { int pnum = 0; for(int i = 2;

莫比乌斯函数&莫比乌斯反演

莫比乌斯函数:http://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html  OrzPoPoQQQ 这个证明过程第三步和第四步一开始没看懂…… 第三步:观察计算左边f(k)的系数,可以看出只要d不大于n/k均可以使μ(d)成为f(k)的系数,那么f(k)的系数就是sigma[d丨(n/k)] μ(d) (方括号内为d的范围) 利用整除的性质,重新组合了一下这几项,相当于对一个多项式重新分组提取因式什么的…… 第四步:利用sigma μ(d)=

数论入门——莫比乌斯函数,欧拉函数,狄利克雷卷积,线性筛,莫比乌斯反演,杜教筛

一个菜鸡对数论的一点点理解... 莫比乌斯函数 定义函数\(\mu(n)\)为: 当n有平方因子时,\(\mu(n)=0\). 当n没有平方因子时,\(\mu(n)=(-1)^{\omega(n)}\),\(\omega(n)\)表示n不同质因子的个数. 性质1: \(\sum_{d|n}\mu(d)=[n=1]\) 证明:我们把n分解质因数,则原式\(=(-1+1)^{\omega(n)}=0\). 因为对于不同的质因子,只有选和不选两种方案,这是一个组合数相加的形式,偶数加奇数减,根据二项式

与莫比乌斯反演没什么关系的莫比乌斯函数题

Codeforces 1139D. Steps to One 题目大意: 给出$m$,一个空的数列,每次可以$rand$一个数$x\in[1,m]$放到数列的末尾,若整个数列的$gcd==1$则停止加入数 求数列的期望长度 思路: 考虑当前整个数列的$gcd$为质数$p$的倍数,则若下一个数还是$p$的倍数即$\sum\limits_{i=1}^m [gcd(i,p)==p]$,相当于没变 则设当前$gcd$对答案产生的贡献为$ans_x$得到:$ans_x=1+ \sum\limits_{i=

【数论】莫比乌斯函数

莫比乌斯函数     莫比乌斯函数!?提到这个东西你会不会想到一个大神级的玩意:莫比乌斯反演       莫比乌斯函数其实很简单,非常非常简单…… 好了,步入正题吧……        我们定义一个函数M,参数为x,函数内容如下: X=X1^P1*X2^P2*……*Xa^Xk        那么这个式子到底是用来干什么的呢?        我们使X1.X2.X3都存在一个素数集合中,那么它们必定都是素数        则P1.P2.P3……为指数,因为对于任何数x(x>=2),都可以写成这种形式.

BZOJ 2440: [中山市选2011]完全平方数(二分答案 + 莫比乌斯函数 + 容斥原理)

传送门 2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2693  Solved: 1307[Submit][Status][Discuss] Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 W 想送一个数给他作为生日礼物.当然他不能送

莫比乌斯函数与杜教筛

前人的文章已经很详尽了,这里只作一点补充. 莫比乌斯反演与莫比乌斯函数入门资料:https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html 讲的非常清楚,这里稍微补充一下: 1.虽然考试肯定不会考,但是对于定理的证明还是应该大概了解一下的.关于欧拉函数φ与莫比乌斯函数μ,由于它们都是积性函数,所以很多性质都可以用类似数学归纳法的方法证明.过程是:(1)对于一个性质证明在x为素数是成立 (2)对于素数p和一个正整数a,设此性质对a与p均成立