【361】机器学习常见算法

K-近邻算法(K Nearest Neighbors)

参考:机器学习实战教程(一):K-近邻算法(史诗级干货长文)

决策树算法(Decision Tree)

参考:机器学习实战教程(二):决策树基础篇之让我们从相亲说起

参考:机器学习实战教程(三):决策树实战篇之为自己配个隐形眼镜

朴素贝叶斯算法(Naive Bayes)

参考:机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

参考:机器学习实战教程(五):朴素贝叶斯实战篇之新浪新闻分类

参考:朴素贝叶斯分类器的应用 —— 阮一峰

参考:算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)

参考:《机器学习实战》第4章

原文地址:https://www.cnblogs.com/alex-bn-lee/p/10323607.html

时间: 2024-10-11 05:12:17

【361】机器学习常见算法的相关文章

机器学习常见算法分类汇总

机器学习常见算法分类汇总 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多或少会用到机器学习的算法.这里 IT 经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考. 机器学习的算法很多.很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的.这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性. 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式.在机器学习或者人工智能领域,人们首先会考虑算法的学习

机器学习常见算法优缺点总结

机器学习常见算法优缺点总结 K近邻:算法采用测量不同特征值之间的距离的方法进行分类. 优点: 1.简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归: 2.可用于数值型数据和离散型数据: 3.训练时间复杂度为O(n):无数据输入假定: 4.对异常值不敏感 缺点: 1.计算复杂性高:空间复杂性高: 2.样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少): 3.一般数值很大的时候不用这个,计算量太大.但是单个样本又不能太少 否则容易发生误分. 4.最大的缺点是无法给

[Machine Learning] 机器学习常见算法分类汇总

声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多或少会用到机器学习的算法.本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考. 机器学习的算法很多.很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的.这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的分类. 博主根据原创基础上加入了遗

人工智能之机器学习常见算法

摘要 之前一直对机器学习很感兴趣,一直没时间去研究,今天刚好是周末,有时间去各大技术论坛看看,刚好看到一篇关于机器学习不错的文章,在这里就分享给大家了. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多或少会用到机器学习的算法.这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考. 机器学习的算法很多.很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的.这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法

机器学习常见算法及原理总结(干货)

朴素贝叶斯 参考[1] 事件A和B同时发生的概率为在A发生的情况下发生B或者在B发生的情况下发生A P(A∩B)=P(A)?P(B|A)=P(B)?P(A|B) 所以有: P(A|B)=P(B|A)?P(A)P(B) 对于给出的待分类项,求解在此项出现的条件下各个目标类别出现的概率,哪个最大,就认为此待分类项属于哪个类别 工作原理 1.假设现在有样本x=(a1,a2,a3,-an)这个待分类项(并认为x里面的特征独立) 2.再假设现在有分类目标Y={y1,y2,y3,y4..yn} 3.那么ma

机器学习常见算法个人总结(面试用)【转载】

朴素贝叶斯 参考[1] 事件A和B同时发生的概率为在A发生的情况下发生B或者在B发生的情况下发生AP(A∩B)=P(A)∗P(B|A)=P(B)∗P(A|B) 所以有:P(A|B)=P(B|A)∗P(A)P(B) 对于给出的待分类项,求解在此项出现的条件下各个目标类别出现的概率,哪个最大,就认为此待分类项属于哪个类别 工作原理 假设现在有样本x=(a1,a2,a3,…an)这个待分类项(并认为x里面的特征独立) 再假设现在有分类目标Y={y1,y2,y3,y4..yn} 那么max(P(y1|x

机器学习常见算法总结(面试用)

朴素贝叶斯 参考[1] 事件A和B同时发生的概率为在A发生的情况下发生B或者在B发生的情况下发生A P(A∩B)=P(A)?P(B|A)=P(B)?P(A|B) 所以有: P(A|B)=P(B|A)?P(A)P(B) 对于给出的待分类项,求解在此项出现的条件下各个目标类别出现的概率,哪个最大,就认为此待分类项属于哪个类别 工作原理 1.假设现在有样本x=(a1,a2,a3,-an)这个待分类项(并认为x里面的特征独立) 2.再假设现在有分类目标Y={y1,y2,y3,y4..yn} 3.那么ma

机器学习 常见算法分类

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能. 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳.综合而不是演绎. 综合分类 综合考虑各种学习方法出现的历史渊源.知识表示.推理策略.结果评估的相似性.研究人员交流的相对集中性以及应用领域等诸因素.将机器

机器学习常见算法个人总结(面试用)

By Kubi Code 朴素贝叶斯 参考[1] 事件A和B同时发生的概率为在A发生的情况下发生B或者在B发生的情况下发生AP(A∩B)=P(A)?P(B|A)=P(B)?P(A|B)所以有:P(A|B)=P(B|A)?P(A)P(B) 对于给出的待分类项,求解在此项出现的条件下各个目标类别出现的概率,哪个最大,就认为此待分类项属于哪个类别 工作原理 假设现在有样本x=(a1,a2,a3,-an)这个待分类项(并认为x里面的特征独立) 再假设现在有分类目标Y={y1,y2,y3,y4..yn}