Mayor's posters 线段树区间覆盖

题目链接

http://poj.org/problem?id=2528

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of
    the wall; the width of a poster can be any integer number of bytes (byte
    is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is
enough place for all candidates). When the electoral campaign was
restarted, the candidates were placing their posters on the wall and
their posters differed widely in width. Moreover, the candidates started
placing their posters on wall segments already occupied by other
posters. Everyone in Bytetown was curious whose posters will be visible
(entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the
posters are placed given the information about posters‘ size, their
place and order of placement on the electoral wall.

Input

There will be several test cases in the input. Each test case consists of N + 1 lines where N (1 ≤ N ≤ 200,000) is given in the first line of the test case. The next N lines contain the pairs of values Posi and Vali in the increasing order of i (1 ≤ iN). For each i, the ranges and meanings of Posi and Vali are as follows:

  • Posi ∈ [0, i − 1] — The i-th person came to the queue and stood right behind the Posi-th
    person in the queue. The booking office was considered the 0th person
    and the person at the front of the queue was considered the first person
    in the queue.
  • Vali ∈ [0, 32767] — The i-th person was assigned the value Vali.

There no blank lines between test cases. Proceed to the end of input.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

HINT

题意

一个区间按照顺序贴n海报,海报高都为1,位置为(l,r),表示海报的位置和长度。

最后问你在最后,能看见多少个海报(即没有被其他海报完全覆盖)。

题解:

这题就是区间覆盖,区间修改,最后将标记全部下放到底,扫一遍叶子节点就好了。

需要注意的是离散化时对于区间(l,r),需要加入l,l+1,r,r+1四个点离散。

如果只离散左右端点,比如 (1,3) (3,10) (10,13)  三个海报离散后,就成了(1,2) (2,3) (3, 4),这样(2,3)就没有了。

代码:

  1 #include<cstdio>
  2 #include<iostream>
  3 #include<algorithm>
  4 #include<cstring>
  5 using namespace std;
  6 #define N 100050
  7 int n,cnt,num,ans,kth[N<<1],f[N];
  8 struct Query{int l,r;}que[N];
  9 struct Tree{int l,r,val;}tr[N<<2];
 10 template<typename T>void read(T&x)
 11 {
 12   int k=0;char c=getchar();
 13   x=0;
 14   while(!isdigit(c)&&c!=EOF)k^=c==‘-‘,c=getchar();
 15   if (c==EOF)exit(0);
 16   while(isdigit(c))x=x*10+c-‘0‘,c=getchar();
 17   x=k?-x:x;
 18 }
 19 void push_down(int x)
 20 {
 21   if (tr[x].val==0)return ;
 22   Tree &a=tr[x<<1],&b=tr[x<<1|1];
 23   a.val=tr[x].val;
 24   b.val=tr[x].val;
 25   tr[x].val=0;
 26 }
 27 void bt(int x,int l,int r)
 28 {
 29   ++num;
 30   tr[x]={l,r,0};
 31   if (l==r)return;
 32   int mid=(l+r)>>1;
 33   bt(x<<1,l,mid);
 34   bt(x<<1|1,mid+1,r);
 35 }
 36 void update(int x,int l,int r,int tt)
 37 {
 38   if (l<=tr[x].l&&tr[x].r<=r)
 39     {
 40       tr[x].val=tt;
 41       return;
 42     }
 43   int mid=(tr[x].l+tr[x].r)>>1;
 44   push_down(x);
 45   if (l<=mid)update(x<<1,l,r,tt);
 46   if (mid<r)update(x<<1|1,l,r,tt);
 47 }
 48 void query(int x)
 49 {
 50   if (tr[x].l==tr[x].r)
 51     {
 52       int tt=f[tr[x].val]==0;
 53       ans+=tt;
 54       f[tr[x].val]=1;
 55       return;
 56     }
 57   int mid=(tr[x].l+tr[x].r)>>1;
 58   push_down(x);
 59   query(x<<1);
 60   query(x<<1|1);
 61 }
 62 void clear()
 63 {
 64   num=0; ans=0; cnt=0;
 65   memset(f,0,sizeof(f));
 66 }
 67 void input()
 68 {
 69   read(n);
 70   for(int i=1;i<=n;i++)
 71     {
 72       read(que[i].l);read(que[i].r);
 73       kth[++cnt]=que[i].l;
 74       kth[++cnt]=que[i].r;
 75       kth[++cnt]=que[i].l+1;
 76       kth[++cnt]=que[i].r+1;
 77     }
 78   sort(kth+1,kth+cnt+1);
 79   cnt=unique(kth+1,kth+cnt+1)-kth-1;
 80   bt(1,1,cnt);
 81 }
 82 void work()
 83 {
 84
 85   for(int i=1;i<=n;i++)
 86     {
 87       int l=lower_bound(kth+1,kth+cnt+1,que[i].l)-kth;
 88       int r=lower_bound(kth+1,kth+cnt+1,que[i].r)-kth;
 89       update(1,l,r,i);
 90     }
 91   f[0]=1;
 92   /*  for(int x=1;x<=n*8;x++)
 93       if (tr[x].l==tr[x].r)
 94       {
 95       ans+=f[tr[x].val]==0;
 96       f[tr[x].val]=1;
 97       }
 98       else push_down(x);
 99   */
100   query(1);
101   printf("%d\n",ans);
102 }
103 int main()
104 {
105 #ifndef ONLINE_JUDGE
106   freopen("aa.in","r",stdin);
107 #endif
108   int q;
109   read(q);
110   while(q--)
111     {
112       clear();
113       input();
114       work();
115     }
116 }

Mayor's posters 线段树区间覆盖

原文地址:https://www.cnblogs.com/mmmqqdd/p/10753344.html

时间: 2024-10-14 09:33:23

Mayor's posters 线段树区间覆盖的相关文章

POJ 2528 Mayor&#39;s posters (线段树区间更新+离散化)

题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值.由于l和r范围比较大,内存就不够了,所以就用离散化的技巧 比如将1 4化为1 2,范围缩小,但是不影响答案. 写了这题之后对区间更新的理解有点加深了,重点在覆盖的理解(更新左右两个孩子节点,然后值清空),还是要多做做题目. 1 #include <iostream> 2 #include <

poj-----(2528)Mayor&#39;s posters(线段树区间更新及区间统计+离散化)

Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral post

poj 2528 Mayor&#39;s posters 线段树区间更新

Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at al

POJ 2528 Mayor&#39;s posters(线段树,区间覆盖,单点查询)

Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45703   Accepted: 13239 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral post

poj 2528 Mayor&#39;s posters(线段树区间覆盖、离散化)

Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 49385   Accepted: 14304 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral post

Mayor&#39;s posters POJ - 2528 线段树区间覆盖

//线段树区间覆盖 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int N=100010; int flag; struct node{ int l,r; //vis 是这块区域是否完全被覆盖 bool vis; }tr[N<<2]; struct point { int id; int x

POJ - 2528Mayor&#39;s posters (离散化+线段树区间覆盖)

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the

Poj 2528 Mayor&#39;s posters (线段树+离散化)

题目连接: http://poj.org/problem?id=2528 题目大意: 有10000000块瓷砖,n张海报需要贴在墙上,每张海报所占的宽度和瓷砖宽度一样,长度是瓷砖长度的整数倍,问按照所给海报顺序向瓷砖上贴海报,最后有几张海报是可见的? 解题思路: 因为瓷砖块数和海报张数多,首选线段树,如果按照常规的建树方式,把瓷砖当做数的节点,肯定会MTL......... 所以我们可以用海报的起点和终点当做树的节点,这样树的节点才有20000个,但是这样建树的话,求海报覆盖了那些节点会很复杂,

poj 2528 Mayor&#39;s posters(线段树)

题目链接:http://poj.org/problem?id=2528 思路分析:线段树处理区间覆盖问题,也可以看做每次给一段区间染不同的颜色,最后求在整段区间上含有的所有颜色种类数: 注意由于区间太大,所以需要离散化: 区间更新:对于线段树的每个结点,标记颜色,初始时没有颜色,标记为0:当更新时,使用延迟标记,需要标记传递到子节点: 区间查询:使用深度优先查询线段树,当某个子节点的颜色不为0时,即停止深度优先搜索,并在map中查询是否已经记录该段区间的颜色: 代码如下: #include <i