LC 980. Unique Paths III

On a 2-dimensional grid, there are 4 types of squares:

  • 1 represents the starting square.  There is exactly one starting square.
  • 2 represents the ending square.  There is exactly one ending square.
  • 0 represents empty squares we can walk over.
  • -1 represents obstacles that we cannot walk over.

Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.

Example 1:

Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

Example 2:

Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)

Example 3:

Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.

Note:

  1. 1 <= grid.length * grid[0].length <= 20

Runtime: 0 ms, faster than 100.00% of C++ online submissions for Unique Paths III.

//
// Created by yuxi on 2019/1/21.
//

#include <vector>
#include <iostream>
using namespace std;

class Solution {
public:
  int cntzero;
  int ret;
  vector<vector<int>> dirs = {{0,1},{0,-1},{-1,0},{1,0}};
  int uniquePathsIII(vector<vector<int>>& grid) {
    vector<vector<int>> records(2, vector<int>(2,0));
    ret = 0;
    cntzero = 0;
    for(int i=0; i<grid.size(); i++) {
      for(int j=0; j < grid[0].size(); j++) {
        if(grid[i][j] == 1) {
          records[0][0] = i;
          records[0][1] = j;
        } else if(grid[i][j] == 2){
          records[1][0] = i;
          records[1][1] = j;
        } else if(grid[i][j] == 0) cntzero++;
      }
    }
    int cnt = 0;
    vector<bool> used(grid.size()*grid[0].size(), false);
    vector<vector<int>> path;
    helper(grid, path, records[0], records[1], cnt, used);
    //cout << ret << endl;
    return ret;
  }
  void helper(vector<vector<int>>& grid, vector<vector<int>>& path, vector<int> s, vector<int>& e, int cnt, vector<bool>& used) {
//    for(int i=0; i<path.size(); i++) {
//      cout << "("<< path[i][0] << " " << path[i][1] << ")" << " ";
//    }
    //printgird(grid);
    int N = grid.size(), M = grid[0].size();
    if(s[0] == e[0] && s[1] == e[1]) {
//      cout << "(" << s[0] << " " << s[1] << ")" << " " << endl;
      if(cnt == cntzero) ret++;
      return;
    }
    // cout << endl;
//    used[s[0]*N+s[1]] = true;
    grid[s[0]][s[1]] = -2;
    path.push_back({s[0],s[1]});
    for(auto& dir : dirs) {
      int newx = dir[0] + s[0], newy = dir[1] + s[1];
      if(newx >= 0 && newx < N && newy >= 0 && newy < M && grid[newx][newy] != -2 && grid[newx][newy] != 1 && grid[newx][newy] != -1) {
        int newcnt = cnt;
        if(grid[newx][newy] == 0) newcnt++;
        helper(grid, path, {newx, newy}, e, newcnt, used);
      }
    }
    grid[s[0]][s[1]] = 0;
//    used[s[0]*N+s[1]] = false;
    path.pop_back();
  }

  void printgird(vector<vector<int>>& grid) {
    int N = grid.size(), M = grid[0].size();
    for(int i=0; i<N; i++) {
      for(int j=0; j<M; j++) {
        cout << grid[i][j] << " ";
      }
      cout << endl;
    }
  }
};

原文地址:https://www.cnblogs.com/ethanhong/p/10306766.html

时间: 2024-10-08 16:01:51

LC 980. Unique Paths III的相关文章

原题链接在这里:980. Unique Paths III

原题链接在这里:https://leetcode.com/problems/unique-paths-iii/ 题目: On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square.  There is exactly one starting square. 2 represents the ending square.  There is exactly one ending s

980. Unique Paths III

On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square.  There is exactly one starting square. 2 represents the ending square.  There is exactly one ending square. 0 represents empty squares we can walk over. -1 repre

[LC] 62. Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in t

Leetcode之深度优先搜索&amp;回溯专题-980. 不同路径 III(Unique Paths III)

深度优先搜索的解题详细介绍,点击 在二维网格 grid 上,有 4 种类型的方格: 1 表示起始方格.且只有一个起始方格. 2 表示结束方格,且只有一个结束方格. 0 表示我们可以走过的空方格. -1 表示我们无法跨越的障碍. 返回在四个方向(上.下.左.右)上行走时,从起始方格到结束方格的不同路径的数目,每一个无障碍方格都要通过一次. 示例 1: 输入:[[1,0,0,0],[0,0,0,0],[0,0,2,-1]] 输出:2 解释:我们有以下两条路径: 1. (0,0),(0,1),(0,2

[Swift Weekly Contest 120]LeetCode980. 不同路径 III | Unique Paths III

On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square.  There is exactly one starting square. 2 represents the ending square.  There is exactly one ending square. 0 represents empty squares we can walk over. -1 repre

leetcode笔记:Unique Paths

一. 题目描述 A robot is located at the top-left corner of a m n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish

LeetCode --- 62. Unique Paths

题目链接:Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (ma

62.Unique Paths (法1递归-动态规划法2数学公式)

A robot is located at the top-left corner of a m x n grid(marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. Therobot is trying to reach the bottom-right corner of the grid (marked 'Finish'in the

[LeetCode]Unique Paths

题目: 从左上角到右下角的所有可能路径. 思路1: 回溯法去递归遍历所有的路径,但是复杂度太大,无法通过.checkPath方法实现 动态规划法,从左上角到每一格的路径数与它的上面一格和左边一格的路径和: N(m,n)=N(m-1,n)+N(m,n-1): 注意:第一行和第一列的特殊情况. package com.example.medium; /** * A robot is located at the top-left corner of a m x n grid (marked 'Sta