human pose estimation

2D Pose estimation主要面临的困难:遮挡、复杂背景、光照、真实世界的复杂姿态、人的尺度不一、拍摄角度不固定等。

单人姿态估计

传统方法:基于Pictorial Structures, DPM

? 基于深度学习的算法包括直接回归坐标(Deep Pose)和通过热力图回归坐标(CPM, Hourlgass)

目前单人姿态估计,主流算法是基于Hourlgass各种更改结构的算法。

多人姿态估计

二维图像姿态估计基于CNN的多人姿态估计方法,通常有2个思路(Bottom-Up Approaches和Top-Down Approaches):

(1)Top-Down Approaches,即two-step framework,就是先进行行人检测,得到边界框,然后在每一个边界框中检测人体关键点,连接成一个人形,缺点就是受检测框的影响太大,漏检,误检,IOU大小等都会对结果有影响,算法包括RMPE、Mask-RCNN 等。

(2)Bottom-Up Approaches,即part-based framework,就是先对整个图片进行每个人体关键点部件的检测,再将检测到的部件拼接成一个人形,缺点就是会将不同人的不同部位按一个人进行拼接,代表方法就是openpose、DeepCut 、PAFs。

tricks

  • 采用多尺度,多分辨率的网络结构
  • 采用基于Residual Block来构建网络
  • 扩大感受野(large kernel, dilation convolution, Spatial Transformer Network、hourglass module)
  • 预处理很重要(将人放在输入图片的中心,人的尺度尽量归一化到统一尺度,对图片进行翻转、旋转)
  • 后处理同样重要

openpose源码中subset输出的关键点顺序是:1鼻子,2脖子,3右肩,4右肘,5右腕,6左肩,7左肘,8左腕,9右髋,10右膝,11右踝,12左髋,13左膝,14左踝,15左眼,16右眼,17左耳,18右耳,19 pt19

输出格式;https://www.aiuai.cn/aifarm712.html

CPM

paper:

https://blog.csdn.net/shenxiaolu1984/article/details/51094959

openPose

GitHub:

Realtime_Multi-Person_Pose_Estimation

https://github.com/CMU-Perceptual-Computing-Lab/openpose

配置:

https://blog.csdn.net/lgh0824/article/details/75949477

https://blog.csdn.net/hk121/article/details/83537350

openPose解析

https://blog.csdn.net/qq_27158179/article/details/82717821

https://www.jianshu.com/c/8602d176d8ea?utm_source=desktop&utm_medium=notes-included-collection

https://zhuanlan.zhihu.com/p/48507352

[OpenPose翻译] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ?原文翻译(注释版)

https://blog.csdn.net/kenllf/article/details/79702078

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ? 实时多人人体姿态估计论文原理讲解

https://blog.csdn.net/Lin_xiaoyi/article/details/78838393

https://blog.csdn.net/yxr403614258/article/details/77977330

Paper reading: Realtime Multi-person 2D Pose estimation using Part Affinity Fields(1)

https://blog.csdn.net/yengjie2200/article/details/68064095

openpose实验总结

https://blog.csdn.net/qq_20657717/article/details/81707746

肤色检测

https://blog.csdn.net/yangtrees/article/details/8269984

基于颜色检测物体

http://www.cnblogs.com/wangxinyu0628/p/5928824.html

项目编译:

https://blog.csdn.net/zb1165048017/article/details/82115724

姿态估计的应用:

https://blog.csdn.net/itchosen/article/details/77200384

https://blog.csdn.net/shenxiaolu1984/article/details/51094959

https://blog.csdn.net/yeahDeDiQiZhang/article/details/78131566

https://www.cnblogs.com/JillBlogs/p/9098989.html

Stacked Hourglass算法详解

https://blog.csdn.net/shenxiaolu1984/article/details/51428392

代码阅读】OpenPose(Pytorch Realtime Multi-Person Pose Estimation)

https://blog.csdn.net/a529975125/article/details/80991781

pytorch千千问

https://blog.csdn.net/daniaokuye/article/details/78851479

原文地址:https://www.cnblogs.com/guantian/p/9999032.html

时间: 2024-10-21 11:08:39

human pose estimation的相关文章

Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network

论文题目Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network, 链接 该篇论文是IJCV 2014的, 文章的核心multi-tasks的joint traning. 直接看图说话, 该论文的核心思想/步骤可以分为两个components: 1对图像里面的person进行detection, 以便裁剪出图像里面的人. 这个显然是必要的, 尤其是图像大而p

在自遮挡下的单目图像3D姿态估计 Monocular Image 3D Human Pose Estimation under Self-Occlusion (ICCV 13)

Monocular Image 3D Human Pose Estimationunder Self-Occlusion (ICCV 13) 在自遮挡下的单目图像3D姿态估计 摘要:文中提出在单张图片中3D姿态自动重建的方法.人体关节.易产生幻觉的身体部位的存在,杂乱的背景,都将导致人体姿态判断的歧义性,这都说明这不是一个简单的问题.研究者研究了许多基于运动和阴影的方法,为了减小歧义性,并对3D姿态进行重建.我们算法的关键思想就是增加运动和方向限制.前一个是在3D模型映射到输入图像时增加的限制,

对DensePose: Dense Human Pose Estimation In The Wild的理解

研究方法 通过完全卷积学习从图像像素到密集模板网格的映射.将此任务作为一个回归问题,并利用手动注释的面部标注来训练我们的网络.使用这样的标注,在三维对象模板和输入图像之间,建立密集的对应领域,然后作为训练的回归系统的基础.论文指出可以将来自语义分割的想法与回归网络相结合,产生高精度的“量化回归”架构 Mask R-CNN 是一个两阶段的框架,第一个阶段扫描图像并生成提议(proposals,即有可能包含一个目标的区域),第二阶段分类提议并生成边界框和掩码. Faster R-CNN 是一个流行的

paper 154:姿态估计(Hand Pose Estimation)相关总结

Awesome Works  !!!! Table of Contents Conference Papers 2017 ICCV 2017 CVPR 2017 Others 2016 ECCV 2016 CVPR 2016 Others 2015 ICCV 2015 CVPR 2015 Others 2014 CVPR 2014 Others & Before Journal Papers Theses Datasets Challenges Other Related Papers Eval

Pose Estimation

Human Pose Estimation for Real-World Crowded Scenarios https://arxiv.org/pdf/1907.06922.pdf CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark https://arxiv.org/pdf/1812.00324.pdf 原文地址:https://www.cnblogs.com/haiyang21/p/11734855

6D姿态估计从0单排——看论文的小鸡篇——Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes

这是linemod的第二篇,这一篇把训练从online learning 变成了 使用3D model, 并且对于检测结果用 3种方法: color.Pose.Depth来确保不会有false positive.感觉有种不忘初心的感觉(笑 基于linemod,是前一篇的改良 initial version of LINEMOD has some disadvantages. First, templates are learnede online, which is difficule to c

caffe openpose/Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields配置(转)

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields 是CVPR2017的一篇论文,作者称是世界上第一个基于深度学习的实时多人二维姿态估计. 优酷演示地址:链接 前几天作者公布了windows下的代码,下面来说说如何配置: 英文配置地址可以参考作者的github:https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/inst

caffe openpose/Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields配置(转)

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields 是CVPR2017的一篇论文,作者称是世界上第一个基于深度学习的实时多人二维姿态估计. 优酷演示地址:链接 前几天作者公布了windows下的代码,下面来说说如何配置: 英文配置地址可以参考作者的github:https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/inst

Learning Temporal Pose Estimation from Sparsely-Labeled Videos

facebook AI 出品 之前的关键点论文大多是在静态图片上进行关键点识别,作者的工作是在不完全标注的视频序列中识别关键点,方法是每k帧进行一次关键点标注,标注的帧和某帧未标注的帧进行特征的warping,进行预测标注帧的结果,利用标注帧的结果反向优化未标注帧的关键点结果. <摘要> 现在视频中的多人关键点识别需要密集标注,资金和劳动力消耗大.作者提出的 PoseWarper 网络利用训练视频每K帧一标注的稀疏标注来实现密集关键点的反向传播和估计.对于已标注的视频帧A和未标注的视频帧B,A