Doing Homework_状态压缩

Problem Description

Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test, 1 day for 1 point. And as you know, doing homework always takes a long time. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.

Input

The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case start with a positive integer N(1<=N<=15) which indicate the number of homework. Then N lines follow. Each line contains a string S(the subject‘s name, each string will at most has 100 characters) and two integers D(the deadline of the subject), C(how many days will it take Ignatius to finish this subject‘s homework).

Note: All the subject names are given in the alphabet increasing order. So you may process the problem much easier.

Output

For each test case, you should output the smallest total reduced score, then give out the order of the subjects, one subject in a line. If there are more than one orders, you should output the alphabet smallest one.

Sample Input

2
3
Computer 3 3
English 20 1
Math 3 2
3
Computer 3 3
English 6 3
Math 6 3

Sample Output

2
Computer
Math
English
3
Computer
English
Math

Hint

In the second test case, both Computer->English->Math and Computer->Math->English leads to reduce 3 points, but the
word "English" appears earlier than the word "Math", so we choose the first order. That is so-called alphabet order.

【题意】给出n个作业名称、截止日期、完成需要花费的时间,求最少需要扣多少

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int inf=0x7777777;
const int N=(1<<15)+10;

int n;
int dp[N];//记录状态i扣得最少分数
int t[N];//相应过去了多少天
int pre[N],dt[N],ti[N];
char s[20][110];

void print(int x)
{
    if(!x) return ;
    print(x-(1<<pre[x]));
    printf("%s\n",s[pre[x]]);
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            scanf("%s%d%d",&s[i],&dt[i],&ti[i]);
        }

        for(int i=1;i<(1<<n);i++)//枚举1到1<<n的状态
        {
            dp[i]=inf;//初始化
            for(int j=n-1;j>=0;j--)
            {
                int tmp=1<<j;
                if(!(i&tmp)) continue;//状态i不存在作业j完成则不能通过
                //完成作业j到达状态i
                int front=i-tmp;//i-tmp表示没有完成作业j的之前那个状态
                int sc=t[front]+ti[j]-dt[j];
                if(sc<0) sc=0;//完成作业j,扣分0;
                if(dp[i]>dp[front]+sc)
                {
                    dp[i]=dp[front]+sc;
                    t[i]=t[front]+ti[j];//从front状态到i状态加上作业j的时间
                    pre[i]=j;//到达状态i的前提完成j作业
                }
            }
        }
        printf("%d\n",dp[(1<<n)-1]);
        print((1<<n)-1);
    }
    return 0;
}
时间: 2024-12-03 05:53:35

Doing Homework_状态压缩的相关文章

HDU_1074_Doing Homework_状态压缩dp

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1074 Doing Homework Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7543    Accepted Submission(s): 3375 Problem Description Ignatius has just come b

胜利大逃亡(续)(状态压缩bfs)

胜利大逃亡(续) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7357    Accepted Submission(s): 2552 Problem Description Ignatius再次被魔王抓走了(搞不懂他咋这么讨魔王喜欢)……这次魔王汲取了上次的教训,把Ignatius关在一个n*m的地牢里,并在地牢的某些地方安装了带

uva 818(dfs+图+状态压缩)

题意:有n个环,编号从1到n,给出了一些环环相扣的情况,比如给a和b表示a和b两个环的扣在一起的,每个环都是可以打开的,问最少打开多少个环,然后再扣好,可以让所有的环成为一条链. 题解:状态压缩把所有的打开环的情况枚举出来,然后拿去判断是否成立,更新打开环后的图g[i][j],和每个点的度数,不成立有三种情况,1.计算没有打开的环的度数,如果大于2说明不会有链,2.把没有打开环拿去dfs,访问过就vis[i]++,如果vis[i]>=2说明存在环,3.如果打开的环数num + 1小于链的数量,说

POJ 3254 Corn Fields 状态压缩DP (C++/Java)

http://poj.org/problem?id=3254 题目大意: 一个农民有n行m列的地方,每个格子用1代表可以种草地,而0不可以.放牛只能在有草地的,但是相邻的草地不能同时放牛, 问总共有多少种方法. 思路: 状态压缩的DP. 可以用二进制数字来表示放牧情况并判断该状态是否满足条件. 这题的限制条件有两个: 1.草地限制. 2.相邻限制. 对于草地限制,因为输入的时候1是可以种草地的. 以"11110"草地分析,就只有最后一个是不可以种草的.取反后得00001  .(为啥取反

uva 11195 Another queen (用状态压缩解决N后问题)

题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2136 Problem A Another n-Queen Problem I guess the n-queen problem is known by every person who has studied backtracking. In this problem you s

dp状态压缩

dp状态压缩 动态规划本来就很抽象,状态的设定和状态的转移都不好把握,而状态压缩的动态规划解决的就是那种状态很多,不容易用一般的方法表示的动态规划问题,这个就更加的难于把握了.难点在于以下几个方面:状态怎么压缩?压缩后怎么表示?怎么转移?是否具有最优子结构?是否满足后效性?涉及到一些位运算的操作,虽然比较抽象,但本质还是动态规划.找准动态规划几个方面的问题,深刻理解动态规划的原理,开动脑筋思考问题.这才是掌握动态规划的关键. 动态规划最关键的要处理的问题就是位运算的操作,容易出错,状态的设计也直

HDU3001(KB2-J 状态压缩dp)

Travelling Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8103    Accepted Submission(s): 2642 Problem Description After coding so many days,Mr Acmer wants to have a good rest.So travelling is

2017盛大游戏杯 零件组装(状态压缩DP之巧妙枚举子集)

题目链接:2017盛大游戏杯 零件组装 题意: 有n个零件,给你相邻关系和排斥关系,每两块零件组装起来有一个代价,问最少的代价总和是多少. 题解: 考虑状态压缩,dp[i]表示i这个集合为一个零件块. 那么要枚举一下i的子集.O(3^n). 先要预处理一下每个集合的排斥个数和相邻个数,然后容斥一下就可以了. 1 #include<bits/stdc++.h> 2 #define mst(a,b) memset(a,b,sizeof(a)) 3 #define F(i,a,b) for(int

HDU1565(状态压缩dp)

方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8170    Accepted Submission(s): 3095 Problem Description 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数