Haar-like特征

参考文献:

【1】Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001, 1: I-511-I-518 vol. 1.

【2】Lienhart R, Maydt J. An extended set of haar-like features for rapid object detection[C]//Image Processing. 2002. Proceedings. 2002 International Conference on. IEEE, 2002, 1: I-900-I-903 vol. 1.

【3】Zhang W Z, Tong R F, Dong J X. Boosted cascade of scattered rectangle features for object detection[J]. Science in China Series F: Information Sciences, 2009, 52(2): 236-243.

目标检测的图像特征提取之(三)Haar特征

[email protected]

http://blog.csdn.net/zouxy09

1、Haar-like特征

Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。

Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述特定走向(水平、垂直、对角)的结构。

对于图中的A, B和D这类特征,特征数值计算公式为:v=Sum白-Sum黑,而对于C来说,计算公式如下:v=Sum白-2*Sum黑;之所以将黑色区域像素和乘以2,是为了使两种矩形区域中像素数目一致。

通过改变特征模板的大小和位置,可在图像子窗口中穷举出大量的特征。上图的特征模板称为“特征原型”;特征原型在图像子窗口中扩展(平移伸缩)得到的特征称为“矩形特征”;矩形特征的值称为“特征值”。

矩形特征可位于图像任意位置,大小也可以任意改变,所以矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数。故类别、大小和位置的变化,使得很小的检测窗口含有非常多的矩形特征,如:在24*24像素大小的检测窗口内矩形特征数量可以达到16万个。这样就有两个问题需要解决了:(1)如何快速计算那么多的特征?---积分图大显神通;(2)哪些矩形特征才是对分类器分类最有效的?---如通过AdaBoost算法来训练(这一块这里不讨论,具体见http://blog.csdn.net/zouxy09/article/details/7922923

2、Haar-like特征的计算—积分图

积分图就是只遍历一次图像就可以求出图像中所有区域像素和的快速算法,大大的提高了图像特征值计算的效率。

积分图主要的思想是将图像从起点开始到各个点所形成的矩形区域像素之和作为一个数组的元素保存在内存中,当要计算某个区域的像素和时可以直接索引数组的元素,不用重新计算这个区域的像素和,从而加快了计算(这有个相应的称呼,叫做动态规划算法)。积分图能够在多种尺度下,使用相同的时间(常数时间)来计算不同的特征,因此大大提高了检测速度。

我们来看看它是怎么做到的。

积分图是一种能够描述全局信息的矩阵表示方法。积分图的构造方式是位置(i,j)处的值ii(i,j)是原图像(i,j)左上角方向所有像素的和:

积分图构建算法:

1)用s(i,j)表示行方向的累加和,初始化s(i,-1)=0;

2)用ii(i,j)表示一个积分图像,初始化ii(-1,i)=0;

3)逐行扫描图像,递归计算每个像素(i,j)行方向的累加和s(i,j)和积分图像ii(i,j)的值

s(i,j)=s(i,j-1)+f(i,j)

ii(i,j)=ii(i-1,j)+s(i,j)

4)扫描图像一遍,当到达图像右下角像素时,积分图像ii就构造好了。

积分图构造好之后,图像中任何矩阵区域的像素累加和都可以通过简单运算得到如图所示。

设D的四个顶点分别为α、β、γ、δ,则D的像素和可以表示为

Dsum = ii( α )+ii( β)-(ii( γ)+ii( δ ));

而Haar-like特征值无非就是两个矩阵像素和的差,同样可以在常数时间内完成。所以矩形特征的特征值计算,只与此特征矩形的端点的积分图有关,所以不管此特征矩形的尺度变换如何,特征值的计算所消耗的时间都是常量。这样只要遍历图像一次,就可以求得所有子窗口的特征值。

3、Haar-like矩形特征拓展

Lienhart R.等对Haar-like矩形特征库作了进一步扩展,加入了旋转45角的矩形特征。扩展后的特征大致分为4种类型:边缘特征、线特征环、中心环绕特征和对角线特征:

在特征值的计算过程中,黑色区域的权值为负值,白色区域的权值为正值。而且权值与矩形面积成反比(使两种矩形区域中像素数目一致);

竖直矩阵特征值计算:

对于竖直矩阵,与上面2处说的一样。

45°旋角的矩形特征计算:

对于45°旋角的矩形,我们定义RSAT(x,y)为点(x,y)左上角45°区域和左下角45°区域的像素和。

用公式可以表示为:

为了节约时间,减少重复计算,可按如下递推公式计算:

而计算矩阵特征的特征值,是位于十字行矩形RSAT(x,y)之差。可参考下图:

时间: 2024-10-19 20:55:41

Haar-like特征的相关文章

opencv - haar人脸特征的训练

step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行.step 2: 生成正负样品的描述文件 正样品描述文件find positive_boosted -iname "*.bmp" -exec echo \{\} 1 0 0 20 20 \; > face.info生成positive_boosted/face00244.bmp 1 0 0 20 20positive_boosted/

Opencv2.4.9源码分析——Cascade Classification(三)

前两篇文章分别介绍了级联分类器的原理和源码解析,下面我们给出一个具体的应用实例. 下面我们以车牌识别为例,具体讲解OpenCV的级联分类器的用法.在这里我们只对蓝底白字的普通车牌进行识别判断,对于其他车牌不在考虑范围内.而且车牌是正面照,略微倾斜可以,倾斜程度太大也是不在识别范围内的. 我们通过不同渠道共收集了1545幅符合要求的带有车牌图像的照片(很遗憾,我只能得到这么多车牌照片,如果能再多一些就更好了!),通过ACDSee软件手工把车牌图像从照片中剪切出来,并统一保存为jpg格式.为便于后续

基于Boost方法的人脸检测(1):整体思路

先推荐大家看着两篇: [2] Viola P, Jones M J. Robust Real-Time Face Detection[J]. International Journal of Computer Vision, 2004, 57(2):137-154. [3] http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html [4] http://blog.csdn.net/xiaowei_cqu/article/details

基于openCV实现人脸检测

openCV的人脸识别主要通过Haar分类器实现,当然,这是在已有训练数据的基础上.openCV安装在 opencv/opencv/sources/data/haarcascades_cuda(或haarcascades)中存在预先训练好的物体检测器(xml格式),包括正脸.侧脸.眼睛.微笑.上半身.下半身.全身等. openCV的的Haar分类器是一个监督分类器,首先对图像进行直方图均衡化并归一化到同样大小,然后标记里面是否包含要监测的物体.它首先由Paul Viola和Michael Jon

【人脸检测——基于机器学习3】AdaBoost算法

简介 主要工作 AdaBoost算法的人脸检测算法包含的主要工作:(1)通过积分图快速求得Haar特征:(2)利用AdaBoost算法从大量的特征中选择出判别能力较强的少数特征用于人脸检测分类:(3)提出一个级联结构模型,将若干个弱分类器集成一个强分类器,其能够快速排除非人脸区域,提高算法的检测速度. 2. AdaBoost算法具体描述 AdaBoost算法的原理是通过逐级增强的方法将弱分类器组合成为分类效果较好的强分类器,具体来说: (1) 给定一个弱学习算法和一个训练集,其中是输入的训练样本

Python学习经典案例:人脸检测

前言 随着科技的发展,人脸识别技术在许多领域得到的非常广泛的应用,手机支付.银行身份验证.手机人脸解锁等等. 识别 废话少说,这里我们使用 opencv 中自带了 haar人脸特征分类器,利用训练好的 haar 特征的 xml 文件,在图片上检测出人脸的坐标,利用这个坐标,我们可以将人脸区域剪切保存,也可以在原图上将人脸框出. 代码实现: # -*-coding:utf8-*-# import os import cv2 from PIL import Image, ImageDraw from

Python学习案例之视频人脸检测识别

前言 上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统.人脸动态跟踪识别系统等等. 案例 这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸. 代码实现: # -*- coding: utf-8 -*- __author__ = "小柒" __blog__ = "https://blog.52itstyle.vip/" import cv2 i

图像特征提取三大法宝:HOG特征,LBP特征,Haar特征

(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM

浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. Ø  基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸. Ø  基于统计的方法:将人脸看作一个整体的模式——二维像素矩

基于Haar特征的Adaboost级联人脸检测分类器

基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点如下: a)        使用Haar-like特征做检测. b)       使用积分图(IntegralImage)对Haar-like特