编辑距离算法详解:Levenshtein Distance算法

算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等于0时,也就是说串s为空,那么对应的d[0,j] 就是 增加j个字符,使得s转化为t,在j等于0时,也就是说串t为空,那么对应的d[i,0] 就是 减少 i个字符,使得s转化为t。

然后我们考虑一般情况,加一点动态规划的想法,我们要想得到将s[1..i]经过最少次数的增加,删除,或者替换操作就转变为t[1..j],那么我们就必须在之前可以以最少次数的增加,删除,或者替换操作,使得现在串s和串t只需要再做一次操作或者不做就可以完成s[1..i]到t[1..j]的转换。所谓的“之前”分为下面三种情况:

1)我们可以在k个操作内将 s[1…i] 转换为 t[1…j-1]

2)我们可以在k个操作里面将s[1..i-1]转换为t[1..j]

3)我们可以在k个步骤里面将 s[1…i-1] 转换为 t [1…j-1]

针对第1种情况,我们只需要在最后将 t[j] 加上s[1..i]就完成了匹配,这样总共就需要k+1个操作。

针对第2种情况,我们只需要在最后将s[i]移除,然后再做这k个操作,所以总共需要k+1个操作。

针对第3种情况,我们只需要在最后将s[i]替换为 t[j],使得满足s[1..i] == t[1..j],这样总共也需要k+1个操作。而如果在第3种情况下,s[i]刚好等于t[j],那我们就可以仅仅使用k个操作就完成这个过程。

最后,为了保证得到的操作次数总是最少的,我们可以从上面三种情况中选择消耗最少的一种最为将s[1..i]转换为t[1..j]所需要的最小操作次数。

算法基本步骤:

(1)构造 行数为m+1 列数为 n+1 的矩阵 , 用来保存完成某个转换需要执行的操作的次数,将串s[1..n] 转换到 串t[1…m] 所需要执行的操作次数为matrix[n][m]的值;

(2)初始化matrix第一行为0到n,第一列为0到m。

Matrix[0][j]表示第1行第j-1列的值,这个值表示将串s[1…0]转换为t[1..j]所需要执行的操作的次数,很显然将一个空串转换为一个长度为j的串,只需要j次的add操作,所以matrix[0][j]的值应该是j,其他值以此类推。

(3)检查每个从1到n的s[i]字符;

(4)检查每个从1到m的s[i]字符;

(5)将串s和串t的每一个字符进行两两比较,如果相等,则让cost为0,如果不等,则让cost为1(这个cost后面会用到);

(6)a、如果我们可以在k个操作里面将s[1..i-1]转换为t[1..j],那么我们就可以将s[i]移除,然后再做这k个操作,所以总共需要k+1个操作。

b、如果我们可以在k个操作内将 s[1…i] 转换为 t[1…j-1] ,也就是说d[i,j-1]=k,那么我们就可以将 t[j] 加上s[1..i],这样总共就需要k+1个操作。

c、如果我们可以在k个步骤里面将 s[1…i-1] 转换为 t [1…j-1],那么我们就可以将s[i]转换为 t[j],使得满足s[1..i] == t[1..j],这样总共也需要k+1个操作。(这里加上cost,是因为如果s[i]刚好等于t[j],那么就不需要再做替换操作,即可满足,如果不等,则需要再做一次替换操作,那么就需要k+1次操作)

因为我们要取得最小操作的个数,所以我们最后还需要将这三种情况的操作个数进行比较,取最小值作为d[i,j]的值;

d、然后重复执行3,4,5,6,最后的结果就在d[n,m]中;

图解:

图解过程如下:

step 1:初始化如下矩阵

step 2:从源串的第一个字符(“j”)开始,从上至下与目标串进行对比

如果两个字符相等,则在从此位置的左,上,左上三个位置中取出最小的值;若不等,则在从此位置的左,上,左上三个位置中取出最小的值再加上1;

第一次,源串第一个字符“j” 与目标串的“j”对比,左,上,左上三个位置中取出最小的值0,因为两字符相等,所以加上0;接着,依次对比“j”→“e”,“j”→“r”,“j”→“r”,,“j”→“y” 到扫描完目标串。

step 3:遍历整个源串与目标串对比:

step 4:扫描完最后一列,则最后一个为最短编辑距离:

求出编辑距离,那么两个字符串的相似度 Similarity = (Max(x,y) - Levenshtein)/Max(x,y),其中 x,y 为源串和目标串的长度。

核心代码如下:

 public class LevenshteinDistance
    {
        private static LevenshteinDistance _instance = null;
        public static LevenshteinDistance Instance
        {
            get
            {
                if (_instance == null)
                {
                    return new LevenshteinDistance();
                }
                return _instance;
            }
        }

        public int LowerOfThree(int first, int second, int third)
        {
            int min = first;
            if (second < min)
                min = second;
            if (third < min)
                min = third;
            return min;
        }

        public int Compare_Distance(string str1, string str2)
        {
            int[,] Matrix;
            int n = str1.Length;
            int m = str2.Length;

            int temp = 0;
            char ch1;
            char ch2;
            int i = 0;
            int j = 0;
            if (n == 0)
            {
                return m;
            }
            if (m == 0)
            {

                return n;
            }
            Matrix = new int[n + 1, m + 1];

            for (i = 0; i <= n; i++)
            {
                Matrix[i, 0] = i;
            }

            for (j = 0; j <= m; j++)
            {
                Matrix[0, j] = j;
            }

            for (i = 1; i <= n; i++)
            {
                ch1 = str1[i - 1];
                for (j = 1; j <= m; j++)
                {
                    ch2 = str2[j - 1];
                    if (ch1.Equals(ch2))
                    {
                        temp = 0;
                    }
                    else
                    {
                        temp = 1;
                    }
                    Matrix[i, j] = LowerOfThree(Matrix[i - 1, j] + 1, Matrix[i, j - 1] + 1, Matrix[i - 1, j - 1] + temp);
                }
            }

            return Matrix[n, m];

        }

        public decimal LevenshteinDistancePercent(string str1, string str2)
        {
            int maxLenth = str1.Length > str2.Length ? str1.Length : str2.Length;
            int val = Compare_Distance(str1, str2);
            return 1 - (decimal)val / maxLenth;
        }
    }  
时间: 2024-10-06 11:53:22

编辑距离算法详解:Levenshtein Distance算法的相关文章

安全体系(一)—— DES算法详解

本文主要介绍了DES算法的步骤,包括IP置换.密钥置换.E扩展置换.S盒代替.P盒置换和末置换. 安全体系(零)-- 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(二)--RSA算法详解 安全体系(三)--SHA1算法详解 1.DES算法简介 DES算法为密码体制中的对称密码体制,又被称为美国数据加密标准. DES是一个分组加密算法,典型的DES以64位为分组对数据加密,加密和解密用的是同一个算法. 密钥长64位,密钥事实上是56位参与DES运算(第8.16.24.32.40

第二十九节,目标检测算法之Fast R-CNN算法详解

Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015. 继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度.在Github上提供了源码. 之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题: 训练分多步.通过上一篇博文我们知道R-CN

5. 目标检测算法之R-CNN算法详解(转)

5. 目标检测算法之R-CNN算法详解(转) 原文链接:https://www.cnblogs.com/zyly/p/9246221.html 目录 一 R-CNN思路 二 算法简述 三 训练步骤 四 优缺点 Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conferenc

java文本相似度计算(Levenshtein Distance算法(中文翻译:编辑距离算法))----代码和详解

算法代码实现: package com.util; public class SimFeatureUtil { private static int min(int one, int two, int three) { int min = one; if (two < min) { min = two; } if (three < min) { min = three; } return min; } public static int ld(String str1, String str2)

机器学习经典算法详解及Python实现--聚类及K均值、二分K-均值聚类算法

摘要 聚类是一种无监督的学习(无监督学习不依赖预先定义的类或带类标记的训练实例),它将相似的对象归到同一个簇中,它是观察式学习,而非示例式的学习,有点像全自动分类.说白了,聚类(clustering)是完全可以按字面意思来理解的--将相同.相似.相近.相关的对象实例聚成一类的过程.机器学习中常见的聚类算法包括 k-Means算法.期望最大化算法(Expectation Maximization,EM,参考"EM算法原理").谱聚类算法(参考机器学习算法复习-谱聚类)以及人工神经网络算法

风螺旋公切线算法详解

风螺旋公切线算法详解 2017-12-29 刘崇军 风螺旋线 好久不见,近来一切可好?2017年最后这段时间里,狂补了一把C#,希望未来能够从软件代码层面实现风螺旋算法的验证与推广.今天跟大家分享的这个话题的底图就是最近一段时间的学习成果:一个基于WPF架构的非常简单的绘图框架,以及对风螺旋的自动化绘制进行的实现.闲话少叙,开始今天的主题. 在掌握了风螺旋切线计算的基础上,就可以开始公切线算法的研究了.公切线的计算是飞行程序模板中非常关键的一项内容,因此,在开始模板算法分享之前,详细回顾一下公切

字符串相似度算法——Levenshtein Distance算法

Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 算法实现原理图解: a.首先是有两个字符串,这里写一个简单的 abc 和 abe b.将字符串想象成下面的结构. A 处 是一个标记,为了方便讲解,不是这个表的内容.   abc a b c abe 0 1 2 3 a 1 A处  

EM算法(3):EM算法详解

目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法详解

[转] KMP算法详解

转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串).比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串.

[搜索]波特词干(Porter Streamming)提取算法详解(3)

 接上 [搜索]波特词干(Porter Streamming)提取算法详解(2) 下面分为5大步骤来使用前面提到的替换条件来进行词干提取. 左边是规则,右边是提取成功或者失败的例子(用小写字母表示). 步骤1 SSES -> SS                   caresses  ->  caress IES  -> I                          ponies    ->  poni ties      ->  ti SS   -> S