UVA - 10003Cutting Sticks(递推)

题目:UVA - 10003Cutting Sticks(递推)

题目大意:给根木棍长度l,现在要锯这根木棍,给出n个锯点,求怎样锯才能使得开销最小。例如 长度为10的木棍, 锯点2 4 7,那么如果按照这个顺序 , 首先显示由长度位10的木头先锯了2 ,开销就加10,然后锯完现在有【0,2】和【2,10】长度分别为2 ,8的木棍,现在要在4这个位置锯木头,就是在长度为8的木头上锯4这个位置,这样就加上8,然后又有长度为【2,4】【4,10】的木头,最后要锯7的话,就需要开销加上6.所以开销就是10 + 8 + 6 = 24;顺序4 2 7的话:开销:10 + 4 +
6 = 20;所以要求最小的开销。

解题思路:之前的想法,长度为l的木头,先挑个地方锯的话,就会产生另外两根,这样就应该从长的开始推短的。但是后面发现从短的推长的也是一样的,因为短的组成长的,和长的锯成短的是一样的,最后只要加上这个长的木棍的长度(也就是开销)。状态转移方程:dp【i】【j】:代表组成锯点i到锯点j这个木棍的最小开销。dp【i】【j】 = Min (dp[i][k] + dp[k][j] + j - i) k> i && k < j) 相邻的锯点是代表这个木棍不能在锯了,所以dp【i】【i + 1】 = 0;

代码:

#include <cstdio>
#include <cstring>

typedef long long ll;

const int maxn = 1005;
const int N = 55;
const int INF = 0x3f3f3f3f;

ll dp[maxn][maxn];
int v[N];
int l, n;

void init () {

	v[n + 1] = l;
	v[0] = 0;
	for (int i = 0; i <= n; i++)
		dp[v[i]][v[i + 1]] = 0;
}

ll Min (const ll a, const ll b) { return a < b? a: b; }

int main () {

	while (scanf ("%d", &l), l) {

		scanf ("%d", &n);

		for (int i = 1; i <= n; i++)
			scanf ("%d", &v[i]);

		init ();
		ll temp;
		for (int i = 2; i <= n + 1; i++)
			for (int j = 0; j + i <= n + 1; j++) {

				temp = INF;
				for (int k = 1; k < i; k++)
					temp = Min (temp, dp[v[j]][v[j + k]] + dp[v[j + k]][v[j + i]]);
				dp[v[j]][v[j + i]] = temp + v[j + i] - v[j];
			}

		printf ("The minimum cutting is %lld.\n", dp[0][l]);
	}
	return 0;
}

UVA - 10003Cutting Sticks(递推),布布扣,bubuko.com

时间: 2024-10-12 03:45:53

UVA - 10003Cutting Sticks(递推)的相关文章

UVA 10237 - Bishops(递推)

UVA 10237 - Bishops 题目链接 题意:问一个n * n棋盘能放k个主教(攻击斜线)的方案数. 思路:递推,首先考虑一个问题,在一个n?n棋盘上,放k个车的方案数. 那么设dp[i][j]为i行用了j个车的方案数,由于每行只能放一个车,那么考虑i行放不放车,如果放车,那么能放的位置有n?(j?1)个位置,为dp[i?1][j?1]?(n?(j?1)). 如果不放那么情况为dp[i?1][j]. 所以递推式为dp[i][j]=dp[i][j?1]+dp[i?1][j?1]?(n?(

UVA 1425 - Metal(递推)

UVA 1425 - Metal 题目链接 题意:给定一个金属板,上面有一些点,现在有一台切割机,要切割出单调四边形,由所有点组成,问有多少种情况. 思路:递推,设dp[i][j],i为上面点,j为下面点,现在多添加一个点k进来,那么原来的dp[i][j]必然要有一维为k - 1,枚举另外一维就是所有情况.然后再添加点进来的过程中还要考虑能不能加进来,写一个判断函数,把连接线之间所有点枚举一边利用向量叉积去判断即可,如果是上面的线,就不能有点在上面,如果是下面的线,就不能有点再下面. 代码: #

uva 11375 - Matches(递推)

题目链接:11375 - Matches 题目大意:给出n根火柴,问说能组成多少种数字,要求说0不能打头. 解题思路:d[i]表示i根火柴能够组成的数量,d[i+c[j]] = d[i+c[j]] + d[i]; 最后dp[i]表示小于等于i根火柴能组成的数量,dp[i]=∑jidp[j]. 高精度. #include <cstdio> #include <cstring> #include <iostream> using namespace std; const i

uva 279 - Spin(递推)

题目链接:uva 279 - Spin 题目大意:进行一个游戏,给出初始状态,要求问说最少多少步可以让所有的环移动出来.移动规则如图所示. 解题思路:一开始以为是隐式图搜索,写完TLE了.后来发现这道题和汉诺塔是一个思路,都是采取最优策略,并且说左边环的状态不会影响右边环.所以dp[i]表示从右边数,第i个为v,其他均为h的步数(由全h变换至). 模拟最优过程有dp[i]=dp[i?1]?2+i?2?1 对已给定状态,可看做由全h变换到该状态的步数.根据容斥原理,第奇数个v为加,偶数个v为减.最

UVA - 624CD(递推+ 路径打印)

题目: UVA - 624CD(递推+ 路径打印) 题目大意:给出一组数据,给定一个N,问这些数据能否拼凑出不大于N的最接近N的数据,可以的话输出最接近N的数据,并且打印出最长路径(要求要找输入的顺序). 解题思路:dp[j]:代表凑出J这个数值最多需要几个数.d[j] = Max (d[j - v[i]] + 1. 打印路径,如果取得是最小值,那么顺着dp标记的值的减小就可以找到路径,但是取的是最大值,这样它的下一个并不能直接靠dp数组的值来判断,而是要判断到最后是否最终的值等于0.用回溯.

UVA 12034 - Race(递推)

UVA 12034 - Race 题目链接 题意:给定n匹马,要求出可能的排名情况(可能并列) 思路:递推,dp[i][j]表示i匹马的时候有j种不同名次,那么dp[i][j]可以由dp[i - 1][j - 1]插入j个不同位置得来,或者由dp[i - 1][j]放入已有j的名次得来,得到递推式dp[i][j] = j * (dp[i - 1][j - 1] + dp[i - 1][j]); 然后对于n的答案为sum{dp[n][j]} (1 <= j <= n) 代码: #include

UVa 1645 Count (递推,数论)

题意:给定一棵 n 个结点的有根树,使得每个深度中所有结点的子结点数相同.求多棵这样的树. 析:首先这棵树是有根的,那么肯定有一个根结点,然后剩下的再看能不能再分成深度相同的子树,也就是说是不是它的约数.那么答案就有了, 我们只要去计算n-1的约数有多少棵不同的树,然后就有递推式了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <str

UVa 557 (概率 递推) Burger

题意: 有两种汉堡给2n个孩子吃,每个孩子在吃之前要抛硬币决定吃哪一种汉堡.如果只剩一种汉堡,就不用抛硬币了. 求最后两个孩子吃到同一种汉堡的概率. 分析: 可以从反面思考,求最后两个孩子吃到不同汉堡的概率. 因为最后两个汉堡是不同的,所以前面的2n-2个孩子吃汉堡之前一定都是要抛硬币的. 所以,吃两种汉堡的孩子人数相等,都是n-1个. 令,对于2n个孩子吃汉堡,所求概率为1 - f(n-1) 我们还可以递推f, 1 #include <iostream> 2 #include <cst

UVA - 11021 - Tribles 递推概率

GRAVITATION, n.“The tendency of all bodies to approach one another with a strengthproportion to the quantity of matter they contain – the quantity ofmatter they contain being ascertained by the strength of their tendencyto approach one another. This