Frost R&D

Trees Procedural Math Model in Houdini,render with Mantra.

Shader use SurfaceModel With Other Attributes.

Trees Procedural Model in Houdini,Render With Arnold

时间: 2024-10-21 07:53:23

Frost R&D的相关文章

R语言实战(四)回归

本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个

【R】多元线性回归

R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤. 1.选择预测变量 因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后选择(逐

R in action读书笔记(11)-第八章:回归-- 选择“最佳”的回归模型

8.6 选择“最佳”的回归模型 8.6.1 模型比较 用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度.所谓嵌套模型,即它的一 些项完全包含在另一个模型中 用anova()函数比较 > states<-as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")]) > fit1

R语言利器之ddply和aggregate

ddply和aggregate是两个用来整合数据的功能强大的函数. aggregate(x, ...) 关于aggregate()函数的使用在<R语言实战>中P105有简单描述,这里重新说一下.此函数主要有一下几种用法: ## Default S3 method: aggregate(x, ...) ## S3 method for class 'data.frame' aggregate(x, by, FUN, ..., simplify = TRUE, drop = TRUE) ## S3

回归预测及R语言实现 Part2 回归R语言实现

下面是回归分析的各种变体的简单介绍,解释变量和相应变量就是指自变量和因变量. 常用普通最小二乘(OLS)回归法来拟合实现简单线性.多项式和多元线性等回归模型.最小二乘法的基本原理前面已经说明了,使得预测值和观察值之差最小. R中实现拟合线性模型最基本的函数是lm(),应用格式为: myfit <- lm(Y~X1+X2+-+Xk,data) data为观测数据,应该为一个data.frame,前面是拟合表达式,Y是因变量,X1-Xk是自变量,+用来分隔不同的自变量的,还有可能用到的其他符号的说明

R语言-回归

定义: 回归是统计学的核心,它其实是一个广义的概念,通常指那些用一个或多个预测变量来预测响应变量.既:从一堆数据中获取最优模型参数 1.线性回归 1.1简单线性回归 案例:女性预测身高和体重的关系 结论:身高和体重成正比关系 1 fit <- lm(weight ~ height,data = women) 2 summary(fit) 3 plot(women$height,women$weight,xlab = 'Height inches',ylab = 'Weight pounds')

R中merge

使用R中merge()函数合并数据 在R中可以使用merge()函数去合并数据框,其强大之处在于在两个不同的数据框中标识共同的列或行. 如何使用merge()获取数据集中交叉部分 merge()最简单的形式为获取两个不同数据框中交叉部分.举例,获取cold.states和large.states完全匹配的数据.代码如下: > merge(cold.states, large.states)   Name Frost  Area1  Alaska  152 5664322 Colorado  16

R语言中aggregate函数

前言 这个函数的功能比较强大,它首先将数据进行分组(按行),然后对每一组数据进行函数统计,最后把结果组合成一个比较nice的表格返回.根据数据对象不同它有三种用法,分别应用于数据框(data.frame).公式(formula)和时间序列(ts): aggregate(x, by, FUN, ..., simplify = TRUE) aggregate(formula, data, FUN, ..., subset, na.action = na.omit) aggregate(x, nfre

R语言实战 第7章

# 01 描述性统计分析 --------------------------------------------------------------#针对总体的mycavs = mtcars[,c(1,4,6)]names(mtcars)#"mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "