hadoop学习笔记--NameNode和DataNode以及容错处理

概念:

HDFS会把一个很大的文件分块(与传统的文件系统类似),存放在不同的DataNode上。不过这个块是个逻辑概念,比较大,默认是64M。

Hadoop以“管理者-工作者”模式运行。NameNode就是管理者,它保存了文件系统中所有文件以及目录信息。也记录了每个文件的分块信息。但这些分块具体在哪些机器上存储则由DataNode自己上报。

容错:

NameNode的容错:

所有的文件访问都要通过NameNode来进行,所以NameNode至关重要。一旦NameNode发生毁坏,则整个系统都不可用。HDFS提供了两种容错机制来保证NameNode的可用性:

1 第一种方法是把文件元数据写入NFS,备份在另一台机器上。备份操作是同步的,原子的。

2 第二种方法是运行辅助的NameNode,不过这个NameNode并不提供服务,它只是把操作日志Merge到Metadata中,但是如果主NameNode失效,总是有一部分数据来不及Merge,会造成数据丢失。所以一般的做法还是把NFS中备份的数据拷贝到这个NameNode,并作为主NameNode运行。

DataNode容错:

DataNode以数据块作为容错单位,通常一个数据块会被复制到三个DataNode上去。一旦某个数据块访问失效,则去其他备份的机器上去读取。并且会把这个数据块再进行一次复制,以达到备份标准。

也就是说,DataNode不是在机器级别上进行备份,而是在数据块级别上进行备份,这样就大大节省了机器数量。

时间: 2024-12-30 13:06:00

hadoop学习笔记--NameNode和DataNode以及容错处理的相关文章

Hadoop源码学习笔记(5) ——回顾DataNode和NameNode的类结构

Hadoop源码学习笔记(5) ——回顾DataNode和NameNode的类结构 之前我们简要的看过了DataNode的main函数以及整个类的大至,现在结合前面我们研究的线程和RPC,则可以进一步看看几个对象的大至结构以及调用关系. 我们知道,三个结构(客户端,NameNode,DataNode)是能过网络调用的,走的是RPC.那在底层通讯时谁做服务器谁做客户端呢?我们先回顾一下这三者关系: 这样看,看不出,我们进入源码,看一下夹在中间的NameNode: 在这个initialize函数中,

Hadoop学习笔记_7_分布式文件系统HDFS --DataNode体系结构

分布式文件系统HDFS --DataNode体系结构 1.概述 DataNode作用:提供真实文件数据的存储服务. 文件块(block):最基本的存储单位[沿用的Linux操作系统地概念].对于文件内容而言,一个文件的长度大小是size,那么从文件的0偏移开始,按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block. 与Linux操作系统不同的是,一旦上传了一个小于Block大小的文件,则该文件会占用实际文件大小的空间. 2.进入hdfs-default.xml <prope

Hadoop学习笔记_6_分布式文件系统HDFS --NameNode体系结构

分布式文件系统HDFS --NameNode体系结构 NameNode 是整个文件系统的管理节点. 它维护着整个文件系统的文件目录树[为了使得检索速度更快,该目录树放在内存中], 文件/目录的元信息和每个文件对应的数据块列表. 接收用户的操作请求. Hadoop确保了NameNode的健壮性,不容易死亡.文件目录树以及文件/目录的元信息等归根到底是存放在硬盘中的,但是在Hadoop运行时,需要将其加载到内存中. 文件包括: fsimage:元数据镜像文件.存储某一时段NameNode内存元数据信

Hadoop学习笔记(一)——Hadoop体系结构

HDFS和MapReduce是Hadoop的两大核心.整个Hadoop体系结构主要是通过HDFS来实现分布式存储的底层支持的,并且通过MapReduce来实现分布式并行任务处理的程序支持. 一.HDFS体系结构 HDFS采用了主从(Master/Slave)结构模型.一个HDFS集群是由一个NameNode和若干个DataNode组成的.其中,NameNode作为主服务器,管理文件系统的命名空间和客户端对文件的访问操作:集群中的DataNode管理存储的数据.HDFS典型的部署是在一个专门的机器

Hadoop学习笔记_2_Hadoop源起与体系概述[续]

Hadoop源起与体系概述 Hadoop的源起--Lucene Lucene是Doug Cutting开创的开源软件,用java书写代码,实现与Google类似的全文搜索功能,它提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎 早期发布在个人网站和SourceForge,2001年年底成为apache软件基金会jakarta的一个子项目 Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎 对于大数据的

hadoop 学习笔记:mapreduce框架详解

hadoop 学习笔记:mapreduce框架详解 开始聊mapreduce,mapreduce是hadoop的计算框架,我 学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的 思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习 hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不

Hadoop学习笔记(2) ——解读Hello World

Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha

hadoop学习笔记——基础知识及安装

1.核心 HDFS  分布式文件系统    主从结构,一个namenoe和多个datanode, 分别对应独立的物理机器 1) NameNode是主服务器,管理文件系统的命名空间和客户端对文件的访问操作.NameNode执行文件系统的命名空间操作,比如打开关闭重命名文件或者目录等,它也负责数据块到具体DataNode的映射 2)集群中的DataNode管理存储的数据.负责处理文件系统客户端的文件读写请求,并在NameNode的统一调度下进行数据块的创建删除和复制工作. 3)NameNode是所有

Hadoop学习笔记(9) ——源码初窥

Hadoop学习笔记(9) ——源码初窥 之前我们把Hadoop算是入了门,下载的源码,写了HelloWorld,简要分析了其编程要点,然后也编了个较复杂的示例.接下来其实就有两条路可走了,一条是继续深入研究其编程及部署等,让其功能使用的淋漓尽致.二是停下来,先看看其源码,研究下如何实现的.在这里我就选择第二条路. 研究源码,那我们就来先看一下整个目录里有点啥: 这个是刚下完代码后,目录列表中的内容. 目录/文件 说明 bin 下面存放着可执行的sh命名,所有操作都在这里 conf 配置文件所在