Python基础-map/reduce/filter

一、map

Python内置函数,用法及说明如下:

class map(object):
    """
    map(func, *iterables) --> map object

    Make an iterator that computes the function using arguments from
    each of the iterables.  Stops when the shortest iterable is exhausted.
    """

map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。  

举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:

def f(x):
    return x * x
r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个IteratorIterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

#使用lambda匿名函数
list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[1, 4, 9, 16, 25, 36, 49, 64, 81]

  

map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:

list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘]

map函数的优点:

  1. 函数逻辑更加清晰,参数‘f’就表明了对元素的操作
  2. map是高阶函数,可以执行抽象度更高的运算  

二、 reduce

def reduce(function, sequence, initial=None): # real signature unknown; restored from __doc__
    """
    reduce(function, sequence[, initial]) -> value

    Apply a function of two arguments cumulatively to the items of a sequence,
    from left to right, so as to reduce the sequence to a single value.
    For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
    ((((1+2)+3)+4)+5).  If initial is present, it is placed before the items
    of the sequence in the calculation, and serves as a default when the
    sequence is empty.
    """
    pass

reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:  

reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

比方说对一个序列求和,就可以用reduce实现:

from functools import reduce
def add(x, y):
    return x + y
reduce(add, [1, 3, 5, 7, 9])
25

匿名函数实现:

reduce(lambda x, y : x + y, [1, 3, 5, 7, 9])
25

当然求和运算可以直接用Python内建函数sum(),没必要动用reduce

但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579reduce就可以派上用场:

from functools import reduce
def fn(x, y):
    return x * 10 + y
reduce(fn, [1, 3, 5, 7, 9])
13579

匿名函数实现:

reduce(lambda x, y: x * 10 + y, [1, 3, 5, 7, 9])
13579

这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:

from functools import reduce
def fn(x, y):
    return x * 10 + y
def char2num(s):
    return {‘0‘: 0, ‘1‘: 1, ‘2‘: 2, ‘3‘: 3, ‘4‘: 4, ‘5‘: 5, ‘6‘: 6, ‘7‘: 7, ‘8‘: 8, ‘9‘: 9}[s]
reduce(fn, map(char2num, ‘13579‘))
13579

整理成一个str2int的函数就是:

from functools import reduce

def str2int(s):
    def fn(x, y):
        return x * 10 + y
    def char2num(s):
        return {‘0‘: 0, ‘1‘: 1, ‘2‘: 2, ‘3‘: 3, ‘4‘: 4, ‘5‘: 5, ‘6‘: 6, ‘7‘: 7, ‘8‘: 8, ‘9‘: 9}[s]
    return reduce(fn, map(char2num, s))

还可以用lambda函数进一步简化成:

from functools import reduce

def char2num(s):
    return {‘0‘: 0, ‘1‘: 1, ‘2‘: 2, ‘3‘: 3, ‘4‘: 4, ‘5‘: 5, ‘6‘: 6, ‘7‘: 7, ‘8‘: 8, ‘9‘: 9}[s]

def str2int(s):
    return reduce(lambda x, y: x * 10 + y, map(char2num, s))

小练习:

  1. 利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。输入:[‘adam‘, ‘LISA‘, ‘barT‘],输出:[‘Adam‘, ‘Lisa‘, ‘Bart‘]: 
list(map(lambda x: x.capitalize(), [‘adam‘, ‘LISA‘, ‘barT‘]))
[‘Adam‘, ‘Lisa‘, ‘Bart‘]

  2. Python提供的sum()函数可以接受一个list并求和,请编写一个prod()函数,可以接受一个list并利用reduce()求积:

def prod(l):
    return reduce(lambda x, y: x * y, l)
l = [1, 2 ,3, 4, 5]
print(prod(l))
120

  匿名函数实现:

reduce(lambda x, y: x * y, [1, 2, 3, 4, 5])
120

  3. 利用mapreduce编写一个str2float函数,把字符串‘123.456‘转换成浮点数123.456:  

from functools import reduce
def char2num(s):
    return {‘0‘: 0, ‘1‘: 1, ‘2‘: 2, ‘3‘: 3, ‘4‘: 4, ‘5‘: 5, ‘6‘: 6, ‘7‘: 7, ‘8‘: 8, ‘9‘: 9}[s]
def str_split(s):
    s1, s2 = s.split(‘.‘)
    return s1, s2
def str2int_1(s1):
    return reduce(lambda x, y: x * 10 + y, map(char2num, s1))
def str2int_2(s2):
    return (reduce(lambda x, y: x * 10 + y, map(char2num, s2)))/pow(10, len(s2))
def str2float(s):
    s1, s2 = str_split(s)
    res = str2int_1(s1) + str2int_2(s2)
    return res
a = str2float(‘123.456‘)
print(a)
123.456

  

待更新:

  

  

  

  

  

  

  

时间: 2024-10-02 19:43:06

Python基础-map/reduce/filter的相关文章

[python基础知识]python内置函数map/reduce/filter

python内置函数map/reduce/filter 这三个函数用的顺手了,很cool. filter()函数:filter函数相当于过滤,调用一个bool_func(只返回bool类型数据的方法)来迭代遍历每个序列中的元素. 返回bool_func结果为true的元素的序列(注意弄清楚序列是什么意思)http://blog.csdn.net/bolike/article/details/19997465序列参考</a> 如果filter参数值为None,list参数中所有为假的元 素都将被

Demo of Python &quot;Map Reduce Filter&quot;

Here I share with you a demo for python map, reduce and filter functional programming thatowned by me(Xiaoqiang). I assume there are two DB tables, that `file_logs` and `expanded_attrs` which records more columns to expand table `file_logs`. For demo

day05 协程函数,递归函数,匿名函数lambda,内置函数map reduce filter max min zip sorted,匿名函数lambda和内置函数结合使用,面向过程编程与函数编程,模块与包的使用,re模块内置函数

基础篇 本章大纲: 协程函数 递归函数 匿名函数lambda 内置函数map reduce filter  max min zip sorted 匿名函数lambda和内置函数结合使用 面向过程编程与函数编程 模块与包的使用 re模块内置函数 一,协程函数 注意:函数先定义,后使用.这是函数第一原则.函数主要分为定义,调用 1.1,什么是协程函数 协程函数特点:yield变为表达式,可以通过g.send(value)传值,用send传值时协程函数需要初始化,也可以说是生成器函数的一种 1.2,协

python的 map和filter函数

一, map     #基本的map运用都可以用解析去替代,复杂的仍然需要定义函数,利用map去做 map(函数, 序列) 将序列的各项经过函数处理, 然后返回到一个新列表中. #itertools.imap() >>> s['a', 'b', 'c', 'd'] >>> exp1 = map(ord, s)      #s 也可以是字符串, 元组, 字典>>> exp1[97, 98, 99, 100] 序列的个数根据前面的函数而定, ord()一次

python--函数式编程 (高阶函数(map , reduce ,filter,sorted),匿名函数(lambda))

1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. 函数式编程:是使用一系列函数去解决问题,函数式编程就是根据编程的范式来的出想要的结果,只要是输入时确定的,输出就是确定的. 1.2高阶函数 能把函数作为参数传入,这样的函数就称为高阶函数. 1.2.1函数即变量 以python的内置函数print()为列,调用该函数一下代码 >>> pri

Python-函数式编程-map reduce filter lambda 三元表达式 闭包

lambda 匿名函数,核心是作为算子,处理逻辑只有一行但具有函数的特性,核心用于函数式编程中 三元运算符 其实本质上是if分支的简化版,满足条件返回 if 前面的值,不满足条件返回 else后面的值 # 100 < 100 返回 False, 则 返回 else后面的值 value = 100 if 100 < 100 else 10 print(value) map 映射函数(依次把可迭代对象(可多个)中的值依次传递到函数中,然后返回生成器(长度以最短的为基础)) numbers = [1

Python基础篇【第2篇】: Python内置函数--map/reduce/filter/sorted

Python内置函数 lambda lambda表达式相当于函数体为单个return语句的普通函数的匿名函数.请注意,lambda语法并没有使用return关键字.开发者可以在任何可以使用函数引用的位置使用lambda表达式.在开发者想要使用一个简单函数作为参数或者返回值时,使用lambda表达式是很方便的.总结:处理简单逻辑,自动返回结果 语法格式: lambda parameters: expression 就相当于 def fun(args) return expression 并且lam

王亟亟的Python学习之路(八)-函数式编程,map(),reduce(),filter()

转载请注明出处:王亟亟的大牛之路 首先在这里祝愿大家,新年快乐,工作顺利,BUG少少!!! 本来说是在春节假期内继续维持着写文章的进度,但是还是偷懒了几天(打了4天SC2哈哈哈) 今天上的是关于Python的文章,毕竟在亲戚家拜年,懒得插各类手机调试什么的,况且确实好久没有弄Python了,就写了,废话不多,开始正题!! 函数式编程 函数是什么? 把复杂的操作化为简单的函数分解成简单的操作,这种操作就是面向过程,也就是C这类的实现的大体概念. 函数式是什么? 函数没有变量,任意一个函数,只要输入

Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)...啊啊啊

函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. 而函数式编程(请注意多了一个"式"字)--Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算. 我们首先要搞明白计算机(Computer)和计算(Compute)的概念. 在计算机的层次上,CPU执行的是加减乘除的指令代码